employee
Moskva, Russian Federation
Moskva, Russian Federation
Institut kataliza im. G.K. Boreskova SO RAN
Novosibirsk, Russian Federation
Lomonosov Moscow State University
Moscow, Moscow, Russian Federation
Moskva, Russian Federation
Permskiy gosudarstvennyy nacional'nyy issledovatel'skiy universitet
Perm', Russian Federation
Minsk, Belarus
Moskva, Russian Federation
Moskva, Russian Federation
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
Moskva, Russian Federation
Moskva, Russian Federation
Permskiy gosudarstvennyy nacional'nyy issledovatel'skiy universitet
Perm', Russian Federation
Moskva, Russian Federation
Moskva, Russian Federation
Novosibirskiy nacional'nyy issledovatel'skiy gosudarstvennyy universitet
Novosibirsk, Russian Federation
Permskiy federal'nyy issledovatel'skiy centr UrO RAN
Perm', Russian Federation
Permskiy gosudarstvennyy nacional'nyy issledovatel'skiy universitet
Perm', Russian Federation
Moskva, Russian Federation
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
Moskva, Russian Federation
Permskiy gosudarstvennyy nacional'nyy issledovatel'skiy universitet
Perm', Russian Federation
Baku, Azerbaijan
Moskva, Russian Federation
Moskva, Moscow, Russian Federation
Moskva, Russian Federation
Minsk, Belarus
Novosibirsk, Russian Federation
Puschino, Russian Federation
Puschino, Russian Federation
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
Moskva, Russian Federation
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
Moskva, Russian Federation
Moskva, Russian Federation
Minsk, Belarus
Moskva, Russian Federation
Minsk, Belarus
employee
Moskva, Russian Federation
UDK 60 Прикладные науки. Общие вопросы
GRNTI 31.27 Биологическая химия
GRNTI 34.17 Биофизика
GRNTI 34.19 Цитология
GRNTI 34.27 Микробиология
GRNTI 34.57 Биоинженерия
OKSO 04.07.01 Химические науки
OKSO 06.07.01 Биологические науки
BBK 24 Химические науки
BBK 28 Биологические науки
TBK 62 Химические науки
TBK 64 Биологические науки
The monograph consists of reviews prepared by specialists having scientific publications, theoretical knowledge and practical experience in research of immobilized cells of different microorganisms, plants and animals, which they conducted for the last decade. The basis of the reviews is composed by the scientific results of the authors and relevant data on the discussed topics, presented in the modern world literature. The monograph collected information about the characteristics of immobilized cells, various approaches used to their regulation, the possible long-term functioning and storage of such cells. It performs the prospects for application of immobilized cells in biomedicine, biodetection systems, synthetic processes of biologically active substances and in overcoming environmental problems. The monograph is intended for specialists in the field of biotechnology, heterogeneous catalysis, green chemistry, biochemistry, biophysics, ecology, cytology, biomedicine as well as for teachers and students of natural science and technological faculties of higher educational institutions, for anyone interested in new results of research on the properties of various cells and applied aspects of their possible use.
immobilized cells, consortia, heterogeneous biocatalysts, quorum sensing, biocatalysis, biofilms, long-term storage, microbial biosensors, pharmacologically active substances, steroid drugs, tissue engineering, microbial polysaccharides, biofuel cell, bioremediation, wastewater treatment, biofuels, biodegradation of toxicants, matrix
1. Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF). / Maslova O.V., Stepanov N.A., Senko O.V. et al. // Bioresource Technology.2019.Vol. 272.P.1-9.
2. Evaluation of biocidal properties of vegetable oil-based corrosion inhibitors using bioluminescent enzymatic method. / Ismayilov I.T., Stepanov N.A., Efremenko E.N. et al. // Moscow University Chemistry Bulletin. 2015. Vol.70(4). P.197-201.
3. Complex effect of lignocellulosic biomass pretreatment with 1-butyl-3-methylimidazolium chloride ionic liquid on various aspects of ethanol and fumaric acid production by immobilized cells within SSF. / Dotsenko A.S., Dotsenko G.S., Senko O.V. et al. // Bioresource Technology. 2018. Vol.250. P.429-438.
4. Stepanov N., Efremenko E. Immobilised cells of Rachysolen tannophilus yeast for ethanol production from crude glycerol. // New Biotechnology. 2017. Vol.34. P.54-58.
5. Efremenko E.N., Tatarinova N.Yu. Vliyanie dlitel'nogo hraneniya kletok mikroorganizmov, immobilizovannyh v kriogel' polivinilovogo spirta, na ih vyzhivaemost' i biosintez celevyh metabolitov. // Mikrobiologiya. 2007. Vol.76(3). P.383-389.
6. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins. / Efremenko E.N., Lyagin I.V., Klyachko N.L. et al. // Journal of Controlled Release. 2017. Vol. 247, P. 175-181.
7. Stepanov N., Efremenko E. «Deceived» concentrated immobilized cells as biocatalyst for intensive bacterial cellulose production from various sources. Catalysts. 2018. Vol. 8(1). 33. https://doi.org/10.3390/catal8010033.
8. Metody immobilizacii mikroorganizmov dlya dinamicheskih atomno-silovyh issledovaniy (obzor). / Kuyukina M. S., Korshunova I.O., Rubcova E. V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2014. T.50(1). S.7-16.
9. Sapropel-based supports as novel macroporous carbon-mineral adsorbents for enzymatic active substances. / Kovalenko G.A., Perminova L.V., Rudina N.A., et al. // Resource-Efficient Technologies. 2016. Vol.2. P.159-167.
10. Tuning surface morphology of inorganic supports for adsorptive immobilization of enzymatic active substances. / Kovalenko G.A., Perminova L.V., Chuenko T.V., et al. // Composite Interfaces. 2009. Vol.16. P.293-305.
11. Adsorptive immobilization of enzymatic active substances on ceramic foam coated by carbon nanofibers. / Kovalenko G.A., Perminova L.V., Chuenko T.V., et al. // Carbon. 2009.Vol.47(2).P.420-427.
12. Heterogeneous biocatalysts prepared by immuring enzymatic active components inside ailica xerogel and nanocarbons-in-silica composites. / Kovalenko G.A., Perminova L.V., Beklemishev A.B., et al. // Catalysts.2018. Vol.8(5).177, https://doi.org/10.3390/catal8050177.
13. Immobilizaciya rekombinantnogo shtamma-producenta glyukozoizomerazy v kserogele dioksida kremniya i svoystva prigotovlennyh biokatalizatorov. / Kovalenko G.A., Perminova L.V., Chuenko T.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2011. Vol.47(2). P.168-175.
14. Kovalenko G.A., Perminova L.V., Sapunova L.I. Geterogennye biokatalizatory dlya polucheniya saharistyh krahmaloproduktov - patok i siropov razlichnogo uglevodnogo sostava. // Kataliz v promyshlennosti. 2010. T.2. C.60-66.
15. Immobilization of enzymatic active substances by immuring inside nanocarbon-in-silica composites. / Kovalenko G.A., Perminova L.V., Rudina N.A., et al. // Journal of Molecular Catalysis B: Enzymatic. 2012. Vol.76(1). P.116-124.
16. Immobilizaciya kletok bakterial'nogo shtamma-producenta glyukozoizomerazy v kompozitnye uglerod-silikatnye matricy. / Sapunova L.I., Kovalenko G.A., Lobanok A.G. i dr. // Doklady NAN Belarusi.2012. T.56(1). C. 98-105.
17. Immobilizaciya rekombinantnogo shtamma-producenta termostabil'noy lipazy iz Thermomyces lanuginosus v nanouglerod-silikatnye matricy i svoystva prigotovlennyh biokatalizatorov. / Kovalenko G.A., Beklemishev A.B., Perminova L.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2013. T.49(3). S.301-311.
18. Immobilization of recombinant E.soli strain-producer of thermostable lipase by entrapment inside silica xerogel and nanocarbon-in-silica composites. / Kovalenko G.A., Beklemishev A.B., Perminova L.V., et al. // Journal of Molecular Catalysis B: Enzymatic. 2013. Vol.98(1). P.78-86.
19. Issledovanie fiziko-himicheskih svoystv biokatalizatorov s aktivnost'yu termostabil'noy lipazy i konechnyh produktov pereeterifikacii trigliceridov. / Kovalenko G.A., Perminova L.V., Beklemishev A.B. i dr. // Biotehnologiya. 2013.T.6. S. 35-50.
20. Biokataliticheskie geterogennye processy pereeterifikacii rastitel'nyh masel v biodizel'. / Kovalenko G.A., Perminova L.V., Beklemishev A.B. i dr. // Kataliz v promyshlennosti. 2014. T.6. S.71-79.
21. Biokatalizatory s aktivnost'yu termostabil'noy lipazy dlya processov biokonversii trigliceridov rastitel'nyh masel: prigotovlenie i svoystva. / Kovalenko G.A., Perminova L.V., Beklemishev A.B., i dr. // Izvestiya VUZov. Seriya Prikladnaya himiya i biotehnologiya. 2015. T.2(13). S. 65-76.
22. Kataliticheskie svoystva lipazy, vklyuchennoy v nanouglerod-silikatnye matricy v vide lizatov shtamma-producenta rEscherichia soli/lip, v reakciyah biokonversii trigliceridov i zhirnyh kislot. / Kovalenko G.A., Perminova L.V., Beklemishev A.B., i dr. // Prikladnaya biohimiya i mikrobiologiya. 2018. T.54(1). S. 46-54.
23. Biokataliticheskie geterogennye processy eterifikacii nasyschennyh zhirnyh kislot s alifaticheskimi spirtami. / Kovalenko G.A., Perminova L.V., Beklemishev A.B. i dr. // Kataliz v promyshlennosti. 2017. T.17(5). S. 399-406.
24. Adsorbcionnaya immobilizaciya kletok rodokokkov v gidrofobiizirovannyh proizvodnyh shirokoporistogo poliakrilamidnogo kriogelya / Kuyukina M.S., Ivshina I.B., Rubcova E.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2011. T.47(2). S.176-182.
25. Survival of cryogel-immobilized Rhodococcus strains in crude oil-contaminated soil and their impact on biodegradation efficiency. / Kuyukina M.S., Ivshina I.B., Kamenskikh T.N., et al. // International Biodeterioration and Biodegradation. 2013. Vol.84, P.118-125.
26. Immobilized fungal biocatalysts for the production of cellulase complex hydrolyzing renewable plant feedstock. / Efremenko E. N., Stepanov N. A., Gudkov D. A., et al. // Catalysis in Industry. 2013. N.5(2). P.190-198.
27. New biocatalyst with multiple enzymatic activities for treatment of complex food wastewater. / Efremenko E., Senko O., Zubaerova D. et al. // Food Technology and Biotechnology. 2008. Vol.46(2). P.208-212.
28. Poluchenie metana v processe biotransformacii immobilizovannyh kletok micelial'nogo griba Rhizopus oryzae, ispol'zovannyh dlya polucheniya molochnoy kisloty. / Mamedova F.T., Sen'ko O.V., Maslova O.V., i dr. // Vestnik biotehnologii i fiziko-himicheskoy biologii imeni Yu.A. Ovchinnikova. 2015. T.11(1). S. 28-33.
29. Resursosberegayuschaya biotehnologiya polucheniya fumarovoy kisloty iz vozobnovlyaemogo rastitel'nogo syr'ya. / Sen'ko O.V., Stepanov, N.A., Maslova, O.V. i dr. // Vestnik Kuzbasskogo Gosudarstvennogo Tehnicheskogo Universiteta. 2013. T.1. S.111-113.
30. Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. / Efremenko E.N., Stepanov N.A., Nikolskaya A.B. et al. // Catalysis in Industry. T.3. P. 41-46.
31. Kul'tura rastitel'nyh kletok i tkaney: tehnologiya polucheniya, raznoobrazie farmakologicheski aktivnyh metabolitov i priemy regulyacii ih sinteza. / Yurin V.M., Molchan O.V., Shapchic M.P. i dr. // Trudy BGU. Fiziologicheskie, biohimicheskie i molekulyarnye osnovy funkcionirovaniya biosistem. 2009. T.4(2). S.168-182.
32. Sintez biologicheski aktivnyh soedineniy immobilizovannymi kletkami lekarstvennyh rasteniy. / Yurin V.M., Ditchenko T.I., Molchan O.V. i dr. // Trudy BGU. Fiziologicheskie, biohimicheskie i molekulyarnye osnovy funkcionirovaniya biosistem. 2013. T. 8(1). S. 86-95.
33. Immobilizaciya - effektivnyy priem povysheniya sinteza biologicheski aktivnyh veschestv v suspenzionnoy kul'ture rastitel'nyh kletok. / Yurin V. M., Romashko S. N., Molchan O. V. i dr. // Trudy BGU Fiziologicheskie, biohimicheskie i molekulyarnye osnovy funkcionirovaniya biosistem. 2010. T.3(1). S.191-199.
34. Yurin V. M. Fiziologo-biohimicheskie zakonomernosti funkcionirovaniya immobilizovannyh rastitel'nyh kletok. // Trudy BGU. Fiziologicheskie, biohimicheskie i molekulyarnye osnovy funkcionirovaniya biosistem. 2012. T.7(1). S.84-98.
35. Polylactide-based microspheres prepared using solid-state copolymerized chitosan and D, L-lactide. / Demina T.S., Akopova T.A., Vladimirov L.V. et al. // Materials Science and Engineering: C. 2016. Vol. 59. P.333-338.
36. DC discharge plasma modification of chitosan films: an effect of chitosan chemical structure. / Demina T.S., Drozdova M.G., Yablokov M.Y. et al. // Plasma Processes Polymers. 2015. Vol.12(8). P. 710-718.
37. Macroporous hydrogels based on chitosan derivatives: Preparation, characterization and in vitro evaluation. / Demina T.S., Zaytseva-Zotova D.S., Akopova T.A., et al. (2017). // Journal of Applied Polymer Science. 2017. Vol.134., 44651. https://doi.org/10.1002/app.44651.
38. Biodegradable scaffolds based on chitosan: Preparation, properties, and use for the cultivation of animal cells. / Kildeeva N. R., Kasatkina M. A., Drozdova M. G., et al. // Applied Biochemestry and Microbiology. 2016. Vol.52(5). P.515-524.
39. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: preparation and in vitro evaluation. / Drozdova M.G., Zaytseva-Zotova D.S., Akasov R.A. et al. // Materials Science and Engineering: C. 2017. Vol.75. P.1075-1082.
40. Structure and properties of chitosan-containing nanofibers. / Sonina A.N., Vikhoreva G.A., Veleshko I.E., et al. // Fibre Chemistry. 2013. Vol.45(2). P.79-84.
41. Biodegradable polyester-based microcarriers with modified surface tailored for tissue engineering. / Privalova A., Markvicheva E., Sevrin C. et al. // Journal of Biomedical Materials Research Part A. 2015. Vol.103(3). P.939-948.
42. Biodegradiruemye matriksy na osnove hitozana: poluchenie, svoystva, ispol'zovanie dlya kul'tivirovaniya zhivotnyh kletok. / Kil'deeva N.R., Kasatkina M.A., Drozdova M.G. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2016. T.52(5). S.504-512.
43. Mediator-free bioelectrocatalytic oxidation of ethanol on an electrode from thermally expanded graphite modified by Gluconobacter oxydans membrane fractions. / Reshetilov A.N., Kitova A.E., Kolesov V.V. et al. // Electroanalysis. 2015. Vol.27(6). P.1443-1448.
44. Konvertornoe nakoplenie elektricheskoy energii, generiruemoy biotoplivnym elementom mikrovattnoy moschnosti. / Reshetilov A.N., Kitova A.E., Ivahnenko A.A. et al. // Vestnik biotehnologii i fiziko-himicheskoy biologii im. Yu.A. Ovchinnikova. 2014. Vol.10(3). P.27-32.
45. Aerobnye metilobakterii kak osnova biosensora dlya detekcii dihlormetana. / Plehanova Yu.V., Firsova Yu.E, Doronina N.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2013. T. 49(2),. S.203-209.
46. Degradaciya EDTA i ego kompleksov s metallami immobilizovannymi kletkami bakteriy Chelativorans oligotrophicus LPM"4. / Kuvichkina T.N., Kaparullina E.N., Doronina N.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2012. T.48(6). S.626-630.
47. Voronova E.A., Iliasov P.V., Reshetilov A.N. Development, investigation of parameters and estimation of possibility of adaptation of Pichia angusta based microbial sensor for ethanol detection. // Analytical Letters. 2008. Vol. 41. P.377-391.
48. Elektrohimicheskiy sensor na osnove alkogol'oksidazy dlya ekspress-opredeleniya soderzhaniya nizshih spirtov. / Alferov V.A., Zaycev M.G., Ponamoreva O.N. i dr. // Zhurnal analiticheskoy himii. 2011. T.66(12). S.1322-1328.
49. Harakteristika receptornyh elementov biosensorov pri dvuh sposobah immobilizacii metilotrofnyh drozhzhey. / Zaycev M.G., Arlyapov V.A., Alferov V.A. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2012. T.48(5). S. 570-575.
50. Determination of ethanol in acetic acid-containing samples by a biosensor based on immobilized Gluconobacter cells. / Reshetilov A.N., Kitova A.E., Arkhipova A.V. et al. // Nusantara Bioscience. 2012. Vol.4. P.97-100.
51. Kuvichkina T.N., Ermakova I.T., Reshetilov A.N. Shtamm Alcaligenes xylosoxydans subsp. denitrificans td2 kak osnova biosensora dlya opredeleniya tiodiglikolya. // Mikrobiologiya. 2012. T.81(6). S. 810-811.
52. Kuvichkina T.N., Kaparullina E.N., Reshetilov A.N. Okislenie metilamina immobilizovannymi metilobakteriyami Methylopila musalis VKM B-2646 // Evraziyskiy soyuz uchenyh (ESU). 2015. Ch.7.№5(14). S.21-23.
53. Ocenka svoystv bioelektrodov na osnove uglerodnyh vysokodispersnyh materialov, soderzhaschih mikroorganizmy Gluconobacter. / Reshetilov A.N., Plehanova Yu.V., Tarasov S.E. i dr. // Rossiyskie nanotehnologii. 2017. T.12(1-2). S.83-89.
54. Anod mikrobnogo biotoplivnogo elementa na osnove termorasshirennogo grafita. / Kitova A.E., Samoylova A.S., Machulin A.V. i dr. // Vestnik biotehnologii i fiziko-himicheskoy biologii im. Yu.A. Ovchinnikova. 2014. T.10(1). S.25-28.
55. Generaciya potenciala biotoplivnym elementom pri ispol'zovanii vnutripolostnoy zhidkosti travyanoy lyagushki Rana temporaria v kachestve elektrolita. / Reshetilov A.N., Kitova A.E., Uteshev V.K. i dr. // Vestnik biotehnologii i fiziko-himicheskoy biologii im. Yu.A. Ovchinnikova. 2014. T.10.(3). S.12-16.
56. Zhivaya batareya - mikrobnyy biotoplivnyy element, funkcioniruyuschiy v organizme travyanoy lyagushki Rana temporaria. / Reshetilov A.N., Plehanova Yu.V., Tarasov S.E. i dr. // Vestnik biotehnologii i fiziko-himicheskoy biologii im. Yu.A. Ovchinnikova. 2015. T.11(2). S.5-10.
57. Biolyuminescentnyy monitoring ekotoksikantov (ekologicheskaya lyuminometriya). / Kuc V.V., Alenina K.A., Sen'ko O.V. i dr. // Voda: himiya i ekologiya. 2011. №10. S.47-53.
58. Biosensors based on the luminous bacteria Photobaterium phosphoreum immobilized in polyvinyl alcohol cryogel for the monitoring of ecotoxicants ./ Efremenko E.N., Senko O.V., Aleskerova L.E. et al. // Appllied Biochemestry and Microbiology.2014. Vol.50(5). P.477-482.
59. Biosensitive element in the form of immobilized luminescent photobacteria for detecting ecotoxicants in aqueous flow-through systems. / Efremenko E.N., Maslova O.V., Kholstov A.V. et al. // Luminescence. 2016. Vol.31(6). P.1283-1289.
60. Ismailov A.D., Kutz V.V., Efremenko E.N. Factors affecting the stability of a light emission at PVA-immobilized cells of Photobacterium phosphoreum. // Luminescence. 2010. Vol.25(2). P.166-167.
61. Gidroksilirovanie steroidov miceliem Curvularia lunata v prisutstvii metil-β-ciklodekstrina. / Andryushina V.A., Druzhinina A.V., Yaderec V.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2011. T.47(1). S.50-57.
62. Gidroksilirovanie steroidov miceliem Curvularia lunata v prisutstvii metil-β-ciklodekstrina. / Andryushina V.A., Druzhinina A.V., Yaderec V.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2011. T.47(1). S.42-48.
63. Novyy immobilizovannyy biokatalizator dlya mikrobiologicheskogo sinteza farmacevticheskih steroidov. / Andryushina V.A., Karpova N.V., Druzhinina A.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2015.T.51(5). S.1-10.
64. Senko O.V., Efremenko E.N. Highly concentrated populations of Aureobasidium pullulans cells in the biocatalytic processes of pullulan production. // Catalysis in Industry. 2017. N.9. P.344-348.
65. Stepanov N.A., Senko O.V., Efremenko E.N. Biocatalytic production of extracellular exopolysaccharide dextran synthesized by cells of Leuconostoc mesenteroides. // Catalysis in Industry. 2017. N.9. P.339-343.
66. Stepanov N.A., Efremenko E.N. Biokataliticheskoe poluchenie al'ginata, produciruemogo kletkami Azotobacter vinelandii v immobilizovannoy forme. // Vestnik biotehnologii i fiziko-himicheskoy biologii imeni Yu.A. Ovchinnikova. 2017. T.13. C.25-30.
67. Transformaciya 2- i 4-cianopiridinov svobodnymi i immobilizovannymi kletkami nitrilgidrolizuyuschih bakteriy. / Maksimova Yu.G., Vasil'ev D.M., Ovechkina G.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2013. T.49(4). S.358-363.
68. Vasil'ev D.M., Maksimova Yu.G., Demakov V.A. Dinamika transformacii 3-cianopiridina immobilizovannymi i svobodnymi kletkami Rhodococcus ruber GT1. // Vestnik Ural'skoy medicinskoy akademicheskoy nauki. 2011. №4/1(38). S.191-192.
69. Biokataliticheskaya transformaciya 3-cianopiridina immobilizovannymi i suspendirovannymi kletkami nitrilutiliziruyuschih bakteriy. / Maksimova Yu.G., Vasil'ev D.M., Ovechkina G.V. i dr. // Vestnik biotehnologii i fiziko-himicheskoy biologii im. Yu.A. Ovchinnikova. 2012. T.8(2). S.54-58.
70. Geterogennyy biokatalizator na osnove kletok nitrilgidrolizuyuschih bakteriy i mnogosloynyh uglerodnyh nanotrubok dlya transformacii nitrilov i amidov. / Maksimova Yu.G., Nikulin S.M., Osoveckiy B.M. // Prikladnaya biohimiya i mikrobiologiya. 2017. T.53(5). R.462-469.
71. Transformaciya amidov adgezirovannymi kletkami rodokokkov, obladayuschimi amidaznoy aktivnost'yu. / Maksimova Yu.G., Gorbunova A.N., Zorina A.S. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2015. T.51(1). S.53-58.
72. Maksimova Yu.G., Gorbunova A.N., Demakov V.A. Stereoselektivnaya biotransformaciya fenilglicinnitrila geterogennym biokatalizatorom na osnove immobilizovannyh bakterial'nyh kletok i fermentnogo preparata. // Doklady akademii nauk. 2017. №474(2). S.248-250.
73. Maksimova Yu.G., Maksimov A.Yu., Demakov V.A. Bioplenki nitrilgidrolizuyuschih bakteriy: dinamika rosta, ustoychivost' k toksichnym veschestvam i biotehnologicheskiy potencial. // Biotehnologiya. 2015. T.4. S.39-51.
74. Ivshina I.B. Sostoyanie i problemy razvitiya specializirovannyh centrov mikrobiologicheskih resursov v Rossii. // Mikrobiologiya. 2012. T.81(5). S.551-560.
75. Rubcova E. V., Kuyukina M. S., Ivshina I. B. Vliyanie usloviy kul'tivirovaniya na adgezivnuyu aktivnost' rodokokkov v otnoshenii n-geksadekana. // Prikladnaya biohimiya i mikrobiologiya. 2012. T.48(5). S.501-509.
76. Vliyanie fiziko-himicheskih svoystv aktinobakteriy roda Rhodococcus na ih adgeziyu k polistirolu i n-geksadekanu. / Rubcova E.V., Krivoruchko A.V., Yarullina D.R. i dr. // Fundamental'nye issledovaniya. 2013. T.4(4). S.900-904.
77. Adsorbcionnaya immobilizaciya kletok rodokokkov v gidrofobizovannyh proizvodnyh shirokoporistogo poliakrilamidnogo kriogelya. / Kuyukina M.S., Ivshina I.B., Rubcova E.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2011. T.47(2). S.176-182.
78. Eksperimental'noe i teoreticheskoe issledovanie processa immobilizacii aktinobakteriy v kolonochnom bioreaktore s psevdoozhizhennym sloem. / Kuyukina M.S., Ivshina I.B., Serebrennikova M.K. i dr. // Rossiyskiy zhurnal biomehaniki. 2012. №164(58). R.83-91.
79. Oilfield wastewater biotreatment in a fluidized-bed bioreactor using co-immobilized Rhodococcus cultures. / Kuyukina M.S., Ivshina I.B., Serebrennikova M.K. et al. // Journal of Environmental Chemical Engineering. 2017. Vol.5. P.1252-1260.
80. Vliyanie organicheskih rastvoriteley na zhiznesposobnost' i morfofunkcional'nye svoystva rodokokkov. / Korshunova I.O., Piscova O.N., Kuyukina M.S. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2016. T.52(1). S.53-61.
81. Adaptaciya koimmobilizovannyh rodokokkov k neftyanym uglevodorodam v kolonochnom bioreaktore. / Serebrennikova M.K., Kuyukina M.S., Krivoruchko A.V. i dr. // Prikladnaya biohimiya i mikrobiologiya. 2014. T.50(3). S.295-303.
82. Bioremediaciya narushennyh uglevodorodami i tyazhelymi metallami pochv s ispol'zovaniem Rhodococcus-biosurfaktantov i immobilizovannyh rodokokkov. / Ivshina I.B., Krivoruchko A.V., Kuyukina M.S. i dr. // Agrarnyy vestnik Urala. 2012. №100(8). S.65-68.
83. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. / Efremenko E. N., Nikolskaya A. B., Lyagin I. V. et al // Bioresourse Technology. 2012. Vol.114. P.342-348.
84. Senko O., Maslova O., Efremenko E. Optimization of the use of His6-OPH-based enzymatic biocatalysts for the destruction of chlorpyrifos in soil. // International Journal of Environmental Research and Public Health. 2017. Vol.14(12). P.1438-1452.
85. Kombinirovannoe primenenie fermentnogo i bakterial'nogo biokatalizatorov v processah biodestrukcii FOV i produktov ih razlozheniya. / Efremenko E.N., Lyagin I.V., Gudkov D.A. i dr. // Teoreticheskaya i prikladnaya ekologiya. 2015. №3. S.35-39.
86. Napravleniya ispol'zovaniya biotehnologicheskih sposobov pri likvidacii posledstviy raboty ob'ektov po unichtozheniyu himicheskogo oruzhiya. / Yankovskaya A.A., Filimonov I.V., Zav'yalova N.V. i dr. // Teoreticheskaya i prikladnaya ekologiya. 2017. №4. S.66-73.
87. Osnovnye tehnologicheskie operacii i stadii bioremediacii pochv i ochistki vod in situ. / Zav'yalova N.V., Filimonov I.V., Kovtun V.A. i dr. // Teoreticheskaya i prikladnaya ekologiya. 2014. №4. S. 34-41.
88. Biokatalizatory na osnove shtammov mikroorganizmov i fermentov, obladayuschih povyshennoy sposobnost'yu k razlozheniyu otravlyayuschih veschestv i produktov ih destrukcii, v processe ochistki pochv i vod. / Zav'yalova N.V., Filimonov I.V., Efremenko E.N. i dr. // Teoreticheskaya i prikladnaya ekologiya, 2014. №4. S. 42-50.
89. Lyagin I.V., Andrianova M.S., Efremenko E.N. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase. // Appllied Microbiology and Biotechnology.2016. Vol.100(13). P.5829-5838.
90. Razryv S-R svyazi v fosfonatah pod deystviem fermentnyh biokatalizatorov. / Efremenko E.N., Zav'yalov V.V., Zav'yalova N.V. i dr. // Teoreticheskaya i prikladnaya ekologiya. 2015. № 3. S.47-53.
91. Immobilizovannye geterogennye biokatalizatory dlya razlozheniya S-R-svyazi v produktah unichtozheniya fosfororganicheskih otravlyayuschih veschestv. / Efremenko E.N., Lyagin I.V., Sen'ko O.V. i dr. // Vestnik RUDN. Seriya: Ekologiya i bezopasnost' zhiznedeyatel'nosti. 2011. №1. S.61-66.
92. Sirotkina M., Lyagin I., Efremenko E. Hydrolysis of organophosphorous pesticides in soil: new opportunities with ecocompatible immobilized His6-OPH. // International Biodeterioration and Biodegradation. 2012. Vol.68. P.18-23.
93. Biotehnologicheskie metody i neytralizuyuschie sredstva dlya obezzarazhivaniya pochv i ochischeniya vod, zagryaznennyh ekotoksikantami. / Zav'yalova N.V., Filimonov I.V., Efremenko E.N. i dr.// Teoreticheskaya i prikladnaya ekologiya. 2014. № 4. S.26-33.
94. Lactic acid production using free cells of bacteria and filamentous fungi and cells immobilized in polyvinyl alcohol cryogel: A comparative analysis of the characteristics of biocatalysts and processes. / Maslova O.V., Senko O.V., Stepanov N.A. et al.// Catalysis in Industry. 2016. Vol.8(3). P.280-285.