с 01.01.2024 по настоящее время Ставрополь, Ставропольский край, Россия
с 01.01.2000 по настоящее время Азур, Израиль
ВАК 3.3 Медико-биологические науки
ВАК 3.4 Фармацевтические науки
УДК 612.4.05 Физика и химия секреции
УДК 612.49 Прочие секреторные процессы
ГРНТИ 76.00 МЕДИЦИНА И ЗДРАВООХРАНЕНИЕ
ГРНТИ 34.00 БИОЛОГИЯ
ОКСО 31.00.00 Клиническая медицина
ОКСО 06.00.00 Биологические науки
ББК 53 Клиническая медицина в целом
ТБК 571 Медикобиологические дисциплины
BISAC MED MEDICAL
Книга посвящена как истории, так и современным теории и практике медицинского и ветеринарного применения, выделения в чистом виде, лабораторного химического синтеза и изучения свойств различных веществ пептидного строения — сначала экстрактов или гидролизатов из тканей и органов, затем — пептидных гормонов и медиаторов, цитокинов, антибиотиков и др. Книга предназначена в первую очередь для студентов и аспирантов высших медицинских учебных заведений, обучающихся по направлениям подготовки «Лечебное дело», «Педиатрия», «Фармация», «Медицинская биохимия», «Ветеринария». Она будет полезна также студентам бакалавриата, магистратуры и аспирантуры высших учебных заведений, обучающихся по направлениям подготовки «Биология», «Биотехнологии», «Фундаментальная и прикладная биология».
пептидология, пептидомика, пептидная медицина, нейропептиды, пептидные гормоны, цитокины, пептидные антибиотики, синтез пептидов
1. Андрюков Б.Г., Беседнова Н.Н., Запорожец Т.С. К 80-летию создания грамицидина С: от изучения асимметрии бактериальных молекул к открытию антимикробных пептидов //Антибиотики и химиотер. 2022. Т. 67. С. 3–4, 85–92. DOI:https://doi.org/10.37489/02352990202267348592.
2. Анохин П.К. Очерки по физиологии функциональных систем. М.: Медицина, 1975. 448 с.
3. Ашмарин И.П., Кулашев А.П., Чепурнов С.А. Каскадные однонаправленные регуляторные процессы, осуществляемые короткоживущими пептидами (тиролиберин) //Физиологический журнал СССР им. И.М. Сеченова. 1989. Т. 75. № 5. С. 627–632.
4. Ашмарин И.П., Обухова М.Ф. Регуляторные пептиды, функционально непрерывная совокупность //Биохимия. 1985. Т. 51. № 4. С. 531–545.
5. Ашмарин, И.П., Обухова М.Ф. Современное состояние гипотезы о функциональном континууме регуляторных пептидов //Вестник Российской академии медицинских наук. М.: Медицина, 1994. № 10. С. 28–33.
6. Беккер Р.А., Быков Ю.В. Юлиус Вагнер-Яурегг: две стороны нобелевской награды //Дневник психиатра. 2016. № 4. С. 22–24.
7. Беккер Р.А., Быков Ю.В., Морозов П.В. Выдающиеся психиатры XX века. М.: Городец, 2019. 256 С.
8. Берштейн Л.М. Владимир Михайлович Дильман — теоретик и практик медицины (к 90летию со дня рождения) //Сахарный диабет. 2015. Т. 18. C. 96–98.
9. Волков В.А., Вонский Е.В., Кузнецова Г.И. Выдающиеся химики мира. М.: ВШ, 1991. 656 с.
10. Дедов И.И., Шестакова М.В. К столетию открытия инсулина //Сахарный диабет. 2021. Т. 24(1). C. 11–16.
11. Дильман В.М. Четыре модели медицины. Л.: Медицина, 1987.
12. Клиническая фармакология тимогена / Ред. В.С. Смирнов. СПб., 2003. 106 с.
13. Королева С.В., Ашмарин И.П. Путь функциональной классификации регуляторных пептидов. Признаки дивергентной и конвергентной эволюции регуляторных пептидов //Журнал эволюционной биохимии и физиологии, 2000. СПб.: Наука. Т. 36. № 2. С. 154–159.
14. Морозов В.Г., Хавинсон В.Х. Выделение из костного мозга, лимфоцитов и тимуса полипептидов, регулирующих процессы межклеточной кооперации в системе иммунитета //Докл. АН СССР. 1981а. Т. 261. № 1. С. 235–239.
15. Морозов В.Г., Хавинсон В.Х. Молекулярные механизмы биорегуляции генетической активности и клеточного метаболизма //Тез. докл. XVIII Всесоюзн. съезда терапевтов. М.: Медицина, 1981б. Т. 1. С. 78–80.
16. Морозов В.Г., Хавинсон В.Х. Новый класс биологических регуляторов многоклеточных систем — цитомедины //Успехи соврем. биологии. 1983. Т. 96. № 3. С. 339–346.
17. Морозов В.Г., Хавинсон В.Х. Пептидные биорегуляторы (25-летний опыт экспериментального и клинического изучения). СПб.: Наука, 1996. 74 с.
18. Морозов В.Г., Хавинсон В.Х. Тималин и его иммунобиологическая активность / Под ред. Ю.А. Гриневича и В.Ф. Чеботарева //Иммунобиология гормонов тимуса. Киев: Здоровья, 1989. С. 125–143.
19. Морозов В.Г., Хавинсон В.Х., Малинин В.В. Пептидные тимомиметики. СПб: Наука, 2000. 158 с.
20. Мохорт Т.В. Препараты инсулина — 100 лет открытий и успеха //Медицинские новости. 2021. № 6(321). С. 5–12.
21. Оковитый С.В., Приходько В.А. Топические лекарственные препараты для лечения инфекционно-воспалительных заболеваний уха и глаз. Эффективная фармакотерапия. 2023. Т. 19(49). С. 36–48. DOIhttps://doi.org/10.33978/23073586202319493648.
22. Судаков К.В. Теоретическая физиология: развитие в научной школе П.К. Анохина //Вестник Российской академии медицинских наук. М.: Медицина, 1994. № 10. С. 3–11.
23. Физиология. Основы и функциональные системы: курс лекций. Под ред. К.В.Судакова. М.: Медицина, 2000. 784 с.
24. Хавинсон В.Х., Серый С.В., Малинин В.В. Средство, обладающее иммуномодулирующей активностью: Патент РФ № 2080120. 1997.
25. Шабанов П.Д., Лебедев А.А., Бычков Е.Р. и др. Нейрохимические механизмы и фармакология грелинов //Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18. № 1. С. 5–22. DOI:https://doi.org/10.7816/RCF181522
26. Якубке Х.Д., Ешкайт Х. Аминокислоты, пептиды, белки. 1985. 457 с.
27. Abdalla M.A., McGaw L.J. Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review //Molecules. 2018 Aug 20. Vol. 23(8). P. 2080. DOI:https://doi.org/10.3390/molecules23082080.
28. Abderhalden A., Fodor A. Synthese von hochmolecularen Polypeptiden aus Glykocoll und LLeucin. Ber., 1916. Vol. 49. Pp. 561–578.
29. Acher R., Chauvet J. Structure of vasopressin //Biochem. Biophys. Acta. 1953.Vol. 12. Pp. 487–488.
30. Akabori S., Ikenaka T., Matsumoto K. Asymmetric synthesis of amino acids //Proc. Jap. Acad. 1951. Vol. 27. Pp. 7–9.
31. Akabori S., Ohno K., Narita K. Hydrazinolysis of proteins and peptides: method for the characterization of carboxyl terminal amino acids in proteins. Bull. Chem. Soc. Japan 1952. Vol. 25. Pp. 214–218.
32. Anderson G.W., McGregor A.C. Tbutyloxycarbonylamino acids and their use in peptide synthesis //J. Am. Chem. Soc. 1957. Vol. 79. Pp. 6180–6183. DOI:https://doi.org/10.1021/ja01580a020.
33. Arnon S.S., Schechter R., Inglesby T.V. et al. Botulinum toxin as a biological weapon: medical and public health management //Jama. Vol. 285(8). 2001. Pp. 1059–1070.
34. Babu V.S. One hundred years of peptide chemistry //Resonance. 2001. Vol. 10(6). Pp. 68–75.
35. Baggerman G., Verleyen P., Clynen E. et al. Peptidomics //Journal of Chromatography B. 20014. Vol. 803(1). Pp. 3–16.
36. Baig M.H., Ahmad K., Saeed M. et al. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases //Biomed Pharmacother. 2018. Vol. 103. Pp. 574–581. DOI:https://doi.org/10.1016/j.biopha.2018.04.025.
37. Barany G., Merrifield R. A new amino protecting group removable by reduction.Chemistry of the dithiasuccinoyl (dts) function //J. Am. Chem. Soc. 1977. Vol. 99. Pp. 7363–7365. DOI:https://doi.org/10.1021/ja00464a050.
38. Bartlett M.F., Roeske R., Stedman R.J. et al. Studies on the synthesis of lysine vasopressin //J. Am. Chem. Soc. 1956. Vol. 78. Pp. 2905–2906.
39. Battersby A.R, Craig L.C. The molecular weight determination of polypeptides //J. Am. Chem. Soc. 1951. Vol. 73. Pp. 1887–1888.
40. Bergmann M., Zervas L. A general process for the synthesis of peptides //Ber. Dtsch. Chem. Ges. 1932. Vol. 65B. Pp. 1192–1201.
41. Bergmann M., Zervas L. Über ein allgemeines Verfahren der PeptidSynthese //Ber Deutsch Chem Ges. 1932. Vol. 65. Pp. 1192–201.
42. Berman A.L., Kolker E., Trifonov E.N. Underlying order in protein sequence organization //P. Natl. A. Sci. USA. 1994. Vol. 91. Pp. 4044–4047. DOI:https://doi.org/10.1073/pnas.91.9.4044.
43. Carpino L.A. Oxidative reactions of hydrazines. Iv. Elimination of nitrogen from 1, 1-disubstituted 2-arenesulfonhydrazides //J. Am. Chem. Soc. 1957. Vol. 79. Pp. 4427–4431. DOI:https://doi.org/10.1021/ja01573a050.
44. Carpino L.A., Han G.Y. 9Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group //J. Am. Chem. Soc. 1970. Vol. 92. Pp. 5748–5749. DOI:https://doi.org/10.1021/ja00722a043.
45. Chandrudu S., Simerska P., Toth I. Chemical methods for peptide and protein production. Molecules. 2013. Vol. 18(4). Pp. 4373–88. DOI:https://doi.org/10.3390/molecules18044373.
46. Coin I., Dölling R., Krause E. et al. Depsipeptide methodology for solid phase peptide synthesis: circumventing side reactions and development of an automated technique via depsidipeptide units //J. Org Chem. 2006. Vol. 71(16). Pp. 6171–7.
47. Conibear A.C., Watson E.E., Payne R.J. et al. Native chemical ligation in protein synthesis and semisynthesis //Chem Soc Rev. 2018. Vol. 47(24). Pp. 9046–9068. DOI:https://doi.org/10.1039/c8cs00573g.
48. Consden R., Gordon A.H., Martin A.J.P. et al. Gramicidin S: the sequence of the amino acid residues //Biochem. J. 1947. Vol. 41. Pp. 596–602.
49. Curtius T. Synthetische Versuche mit Hippurazid //Ber. Dtsch. Chem. Ges. 1902. Vol. 35. Pp. 3226–3228.
50. Curtius T. Uber die Einwirkkung von Chlorbenzoyl auf Glycocollsilber (vorlaufige Mitt.) //J. Prakt. Chemie. 1881. Vol. 2. Pp. 239–240.
51. Curtius T. Ueber einige neue der Hippursäure analog constituirte, synthetisch dargestellte Amidosäuren //J. Prakt Chemie. 1882. Vol. 26. Pp. 145–208.
52. Curtius T. Verkettung von Amidosäuren. I. Abhandlung //J Prakt Chemie. 1904. Vol. 70(1). Pp. 57–72.
53. Curtius T., Gumlich O. Verkettung von Amidosäuren; VII. Abhandlung. Kettenbildung zwischen Hippurazid und βAminoαoxypropionsäure und βAminobuttersäure //J Prakt Chemie. 1904. Vol. 70(1). Pp. 195–223.
54. Curtius T., Müller E. Verkettung von Amidosäuren; VIII. Abhandlung. Über Hippurylγaminobuttersäure und Hippurylβphenylαalanin //J. Prakt Chemie. 1904. Vol. 70(1). Pp. 223–229.
55. Da’san M.J. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation //Amino acids. 2018. Vol. 50(1). Pp. 39–68.
56. Dawson P.E., Muir T.W., ClarkLewis I. et al. Synthesis of proteins by native chemical ligation //Science. 1994. Vol. 266. Pp. 776–778.
57. Deamer D. First life: Discovering the connections between stars, cells, and how life began. Univ of California Press, 2012.
58. Du Vigneaud V., Miller G.L. A synthesis of glutathione //J. Biol. Chem. 1936. Vol. 116. Pp. 469–476.
59. Du Vigneaud V., Ressler C., Swan J.M. et al. The synthesis of an octapeptide amide with the hormonal activity of oxytocin //J. Am Chem Soc. 1953. Vol. 75. Pp. 4879–80.
60. Du Vigneaud V., Ressler C., Swan J.M. et al. The synthesis of oxytocin //J. Am. Chem. Soc. 1954. Vol. 76. Pp. 3115–3121.
61. Du Vigneaud V., Ressler C., Trippet S. The sequence of amino acids in oxytocin with a proposal for the structure of oxytocin //J. Biol. Chem. 1953. Vol. 205. Pp. 949–957.
62. DuarteMata D.I., SalinasCarmona M.C. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection //Front Immunol. 2023 Mar 28. Vol. 14. P. 1119574. DOI:https://doi.org/10.3389/fimmu.2023.1119574.
63. Fischer E. Synthese von Polypeptiden, IX. Chloride der Aminosa¨uren und ihrer Acylderivate //Ber. Dtsch. Chem. Ges. 1905. Vol. 38. Pp. 605–620.
64. Fischer E. Synthetical chemistry in its relation to biology (Faraday Lecture) //J. Chem Soc Chem Commun. 1907. Vol. 91. Pp. 1749–65.
65. Fischer E. Untersuchungen uber Aminos auren, Polypeptide and Proteine (1899–1906) //J. Springer: Berlin, 1906. Pp. 1–83.
66. Fischer E. Untersuchungen uber Aminos auren, Polypeptide and Proteine (1907–1909) //J. Springer: Berlin, 1923. Pp. 1–21.
67. Fischer E., Fourneau E. Ueber einige Derivate des Glykocolls //Ber Deutsch Chem Ges. 1901. Vol. 34. Pp. 2868–77.
68. Galdiero S., Gomes P.A.C. PeptideBased Drugs and Drug Delivery //Systems. Molecules. 2017. Vol. 22(12). DOI:https://doi.org/10.3390/molecules22122185.
69. Gallardo Becerra L., Cervantes Echeverría M., Cornejo Granados F. et al. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota //Microb Ecol. 2023 Dec 1. Vol. 87(1). P. 8. DOI:https://doi.org/10.1007/s00248023023138.
70. Gan B.H., Gaynord J., Rowe S.M. et al. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions //Chem Soc Rev. 2021 Jul 5. Vol. 50(13). Pp. 7820–7880. DOI:https://doi.org/10.1039/d0cs00729c.
71. Goodman M., Cai W., Smith N. The bold legacy of Emil Fischer //J. Pept Sci 9. 2003. Pp. 594–603.
72. Grapsas I., Cho Y.J., Mobashery S. N(tertbutoxycarbonyloxy)-5-norbornene endo(2, 3)-dicarboximide, a reagent for the regioselective introduction of the tert-butoxycarbonyl (boc) protective group at unhindered amines: Application to amino glycoside chemistry //J. Org. Chem. 1994. Vol. 59. Pp. 1918–1922. DOI:https://doi.org/10.1021/jo00086a055.
73. Gutte B., Merrifield R.B. The total synthesis of an enzyme with ribonuclease A activity //J. Am Chem. Soc. 1969. Vol. 91. Pp. 501–2.
74. Harington C.R., Mead T.H. Synthesis of glutathione. Biochem //J. 1935. Vol. 29. Pp. 1602–1611.
75. Hirschmann R., Nutt R.F., Veber D.F. et al. Studies on the total synthesis of an enzyme. V. The preparation of enzymatically active material //J. Am Chem Soc. 1969. Vol. 91. Pp. 507–8.
76. Hopkins F.G. Glutathione: a reinvestigation //J. Biol. Chem. 1929. Vol. 84. Pp. 269–320.
77. Ivanov V.T., Blishchenko E.Y., Sazonova O.V. et al. What to synthesize? From Emil Fischer to peptidomics //J. Pept Sci. 2003. Vol. 9(9). Pp. 553–62.
78. Izumi Y., Tasumi S., Imaida M. et al. The preparation of optically active alphaCsubstituted glutamic acid //Bull. Chem. Jap. 1965. Vol. 38. Pp. 1338–1340.
79. Jiao Z.T., Luo Q. Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review. Nutrients. 2022 Oct 8. Vol. 14(19). P. 4191. DOI:https://doi.org/10.3390/nu14194191.
80. Kemp D., Leung S.L., Kerkman D.J. Models that demonstrate peptide bond formation by prior thiol capture i. Capture by disulfide formation //Tetrahedron Lett. 1981. Vol. 22. Pp. 181–184. DOI:https://doi.org/10.1016/00404039(81)800494.
81. Kendall E.C., Mason H.L., McKenzie B.F. A study of glutathione. III. The structure of glutathione //J. Biol. Chem. 1930. Vol. 87. Pp. 55–79.
82. Khorana H.G. The use of dicyclohexylcarbodiimide in the synthesis of peptides //Chem. Ind. London. 1955. Vol. 33. Pp. 1087–1088.
83. Kimmerlin T., Seebach D. ‘100 years of peptide synthesis’: ligation methods for peptide and protein synthesis with applications to βpeptide assemblies. //The Journal of peptide research. 2005. Vol. 65(2). Pp. 229–260.
84. King D.S., Fields C.G., Fields G.B. A cleavage method which minimizes side reactions following fmoc solid phase peptide synthesis //Int. J. Pept. Prot. Res. 2009. Vol. 36. Pp. 255–266. DOI:https://doi.org/10.1111/j.13993011.1990.tb00976.x.
85. Kojima M. et al. Ghrelin is a growth hormone releasing acylated peptide from stomach //Nature. 1999. Vol. 402. Pp. 656–660.
86. Lau J.L., Dunn M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions //Bioorg Med Chem. 2018. Vol. 26(10). Pp. 2700–2707. DOI:https://doi.org/10.1016/j.bmc.2017.06.052.
87. LauxBiehlmann A., Mouheiche J., Vèrièpe J. et al. Endogenous morphine and its metabolites in mammals: history, synthesis, localization and perspectives //Neuroscience. 2013. Vol. 233. Pp. 95–117.
88. Lee S.H., Yoon K.H. A Century of Progress in Diabetes Care with Insulin: A History of Innovations and Foundation for the Future //Diabetes Metab J. 2021 Sep. Vol. 45(5). Pp. 629–640. DOI:https://doi.org/10.4093/dmj.2021.0163.
89. Lewis G.F., Brubaker P.L. The discovery of insulin revisited: lessons for the modern era //J. Clin Invest. 2021 Jan 4. Vol. 131(1). P. e142239. DOI:https://doi.org/10.1172/JCI142239.
90. Lichtenthaler F.W. Emil Fischer, his personality, his achievements, and his scientific progeny //Eur. J. Org. Chem. 2002. Vol. 24. Pp. 4095–4122. DOI:https://doi.org/10.1002/10990690(200212)2002:24<4095::AIDEJOC4095>3.0.CO;22.
91. Liu C.F., Rao C., Tam J.P. Orthogonal ligation of unprotected peptide segments through pseudoproline formation for the synthesis of hiv1 protease analogs //J. Am. Chem. Soc. 1996. Vol. 118. Pp. 307–312. DOI:https://doi.org/10.1021/ja952790w.
92. Liu C.F., Tam J.P. Peptide segment ligation strategy without use of protecting groups //Proc. Natl. Acad. Sci. USA. 1994. Vol. 91(14). Pp. 6584–8.
93. LópezOtín C., Matrisian L.M. Emerging roles of proteases in tumour suppression //Nature reviews cancer. 2007. Vol. 7(10). P. 800.
94. Magner L.N., Kim O.J. A history of medicine. CRC Press. 2017.
95. Mazurkiewicz-Pisarek A., Baran J., Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use //Int. J. Mol. Sci. 2023 May 20. Vol. 24(10). P. 9031. DOI:https://doi.org/10.3390/ijms24109031.
96. McKay F.C., Albertson N.F. New aminemasking groups for peptide synthesis //J. Am Chem Soc. 1967. Vol. 79. Pp. 4686–4690.
97. Merrifield B. Solid phase synthesis //Science. 1986. Vol. 232. Pp. 341–47.
98. Merrifield B. The chemical synthesis of proteins //Protein Sci. 1996. Vol. 5. Pp. 1947–51.
99. Merrifield R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide //J. Am. Chem. Soc. 1963. Vol. 85. Pp. 2149–2154. DOI:https://doi.org/10.1021/ja00897a025.
100. Merrifield R.B., Stewart J.M., Jernberg N. Instrument for automated synthesis of peptides //Anal. Chem. 1966. Vol. 38. Pp. 1905–14.
101. Mhlongo J.T., Waddad A.Y., Albericio F. et al. Antimicrobial Peptide Synergies for Fighting Infectious Diseases //Adv Sci (Weinh). 2023 Sep. Vol. 10(26). DOI:https://doi.org/10.1002/advs.202300472.
102. Mwangi J., Kamau P.M., Thuku R.C. et al. Design methods for antimicrobial peptides with improved performance //Zool Res. 2023 Nov 18. Vol. 44(6). Pp. 1095–1114. DOI:https://doi.org/10.24272/j.issn.20958137.2023.246.
103. Nicolet B.H. The structure of glutathione //J. Biol. Chem. 1930. Vol. 88. Pp. 389–393.
104. Nilsson B.L., Soellner M.B., Raines R.T. Chemical synthesis of proteins //Annu Rev Biophys Biomol Struct. 2005. Vol. 34. Pp. 91–118.
105. Obradovic M., SudarMilovanovic E., Soskic S. et al. Leptin and Obesity: Role and Clinical Implication //Front Endocrinol (Lausanne). 2021 May 18. Vol. 12. P. 585887. DOI:https://doi.org/10.3389/fendo.2021.585887
106. Olfa M.K., Yosra H., Ikram G. et al. Neuroprotection with the Endozepine Octadecaneuropeptide, ODN //Current pharmaceutical design. 2018. Vol. 24(33). Pp. 3918–3925.
107. Ovchinnikov Yu. A., Ivanov V.T. The cyclic peptides: structure, conformation and function //The Proteins. Academic Press: New York, 1982. Vol. 5. Pp. 307–642.
108. Pavithrra G., Rajasekaran R. Gramicidin Peptide to Combat Antibiotic Resistance: A Review //International Journal of Peptide Research and Therapeutics. 2019. Vol. 26. Pp. 191–199.
109. Pedersen K.O., Synge R.L.M. Diffusion experiments on gramicidin S, tyrocidine, and gramicidin //Acta. Chem. Scand. 1948. Vol. 2. Pp. 408–413.
110. Pedersen S.L., Tofteng A.P., Malik L. et al. Microwave heating in solid-phase peptide synthesis //Chem. Soc. Rev. 2012. Vol. 41. Pp. 1826–1844. DOI:https://doi.org/10.1039/c1cs15214a.
111. Perakakis N., Farr O.M., Mantzoros C.S. Leptin in Leanness and Obesity: JACC State-of-the-Art Review //J. Am. Coll. Cardiol. 2021 Feb 16. Vol. 77(6). Pp. 745–760. DOI:https://doi.org/10.1016/j.jacc.2020.11.069.
112. Pertwee R.G. Endocannabinoids and their pharmacological actions //In Endocannabinoids. Springer, Cham. 2015. Pp. 1–37.
113. Philipson L.H., Bell G., Polonsky K.S. et al. 1930–2014: Discoverer of proinsulin //Proc. Natl. Acad. Sci. USA. 2015. Vol. 112(4). Pp. 940–1. DOI:https://doi.org/10.1073/pnas.1423774112.
114. Pietta P., Marshall G.R. Amide protection and amide supports in solid phase peptide synthesis //J. Chem. Soc. Chem. Comm. 1970. Vol. 11. Pp. 650–651.
115. Rajchakit U., Sarojini V. Recent developments in antimicrobial peptide conjugated gold nanoparticles //Bioconjugate chemistry. 2017. Vol. 28(11). Pp. 2673–2686.
116. Rendell M. Insulin: moments in history //Drug Development Research. 2008. Vol. 69(3). Pp. 95–100.
117. Rink H. Solidphase synthesis of protected peptide fragments using a trialkoxydiphenylmethylester resin //Tetrahedron Lett. 1987. Vol. 28. Pp. 3787–3790. DOI:https://doi.org/10.1016/S00404039(00)963846.
118. Sakakibara S., Kishida Y., Nishizawa R. et al. Use of anhydrous hydrogen fluoride in peptide synthesis //Procedures for the syntheses of simple peptides. Bull. Chem. Soc. Jpn. 1968. Vol. 41. P. 438. DOI:https://doi.org/10.1246/bcsj.41.438.
119. Sakakibara S., Shimonishi Y. New method for releasing oxytocin from fullyprotected nonapeptides using anhydrous hydrogen fluoride //Bull. Chem. Soc. Japan 1965. Vol. 38. Pp. 1412–1413.
120. Šakić Z., Rudež K.D., Radoš Kajić A. et al. Celebrating 100 years of insulin use //Acta. Clin. Croat. 2022 Nov. Vol. 61(3). Pp. 482–487. DOI:https://doi.org/10.20471/acc.2022.61.03.13.
121. Sanger F. Chemistry of insulin //Br. Med. Bull. 1960. Vol. 16. Pp. 183–186.
122. Sanger F., Smith L.F. The structure of insulin. Endeavour 1957. Vol. 16. Pp. 48–53.
123. Schnölzer M., Alewood P., Jones A. et al. In situ neutralization in boc chemistry solid phase peptide synthesis //Int. J. Pept. Prot. Res. 2009. Vol. 40. Pp. 180–193. DOI:https://doi.org/10.1111/j.13993011.1992.tb00291.x.
124. Sheehan J.C., Hess G.P. A new method of forming peptides bonds //J. Am. Chem. Soc. 1955. Vol. 77. Pp. 1067–1068.
125. Sieber P. A new acidlabile anchor group for the solidphase synthesis of cterminal peptide amides by the fmoc method //Tetrahedron Lett. 1987. Vol. 28. Pp. 2107–2110. DOI:https://doi.org/10.1016/S00404039(00)960556.
126. Sifferd R.H., du Vigneaud V. A new synthesis of carnosine, with some observations on the splitting of the benzyl group from carbobenzoxy derivatives and from benzylthioethers //J. Biol. Chem. 1935. Vol. 108. Pp. 753–761.
127. Singh A., Duche R.T., Wandhare A.G. et al. MilkDerived Antimicrobial Peptides: Overview, Applications, and Future Perspectives //Probiotics Antimicrob Proteins. 2023 Feb. Vol. 15(1). Pp. 44–62. DOI:https://doi.org/10.1007/s1260202210004y.
128. Smith P.S. Carbon-to-nitrogen migrations; what the last decade has brought //Trans. NY Acad. Sci. 1969. Vol. 31. Pp. 504–515.
129. Sneader W. Drug discovery: a history //John Wiley & Sons. 2005.
130. Steiner D.F. The proinsulin C-peptide — a multi-role model //Experimental Diabesity Research. 2004. Vol. 5(1). Pp. 7–14.
131. Suresh Babu V.V. One hundred years of peptide chemistry //Resonance. 2001. Vol. 6(10). Pp. 68–75.
132. Takebayashi M. The Curtius rearrangement: A historical description of its discovery and explanation //Kagakushi Kenkyu. 1989. Vol. 16. Pp. 149–153.
133. Tanford C., Reynolds J. Oxford University Press. 2001. 304 Pp.
134. Tuppy H., Michl H. Uber die chemische struktur des oxytocine //Monatsh. Chem. 1953. Vol. 84. Pp. 1011–1020.
135. Uhlig T. et al. The emergence of peptides in the pharmaceutical business: From exploration to exploitation //EuPA Open Proteomics. 2014. Vol. 4. Pp. 58–69.
136. Van Beek C., Leonid V. Sobolev. 1876–1919. Diabetes. 1958 May — Jun. Vol. 7(3). Pp. 245–8. DOI:https://doi.org/10.2337/diab.7.3.245.
137. Wang G., Vaisman I.I., van Hoek M.L. Machine Learning Prediction of Antimicrobial Peptides //Methods Mol Biol. 2022. Vol. 2405. Pp. 1–37. DOI:https://doi.org/10.1007/9781071618554_1.
138. Wang S.S. Palkoxybenzyl alcohol resin and palkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments //J. Am. Chem. Soc. 1973. Vol. 95. Pp. 1328–1333.
139. Zamyatnin A.A. EROPMoscow. Endogenous regulatory oligopeptide knowledge base. 2002. URL: http://erop.inbi.ras.ru.