МЕХАНИЧЕСКАЯ ТЕХНОЛОГИЯ СОЗДАНИЯ ПЛИТНЫХ ФИБРОБЕТОННЫХ И ФИБРОЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ С НАПРАВЛЕННОЙ ОРИЕНТАЦИЕЙ ФИБР В ДВУХ НАПРАВЛЕНИЯХ
Аннотация и ключевые слова
Аннотация (русский):
Разработана модифицированная мобильная установка для создания плитных фибробетонных и фиброжелезобетонных элементов с направленной ориентацией фибр в двух направлениях по предлагаемой механической технологии. Представленная механическая технология создания плитных фибробетонных и фиброжелезобетонных элементов позволит обеспечить в различных слоях конструкции взаимно перпендикулярное направление ориентации фибр, что позволит получить наиболее полное включение в работу элемента каждого фибрового волокна. Также, за счет применения специально разработанной и модифицированной для работы с плитными элементами мобильной установки для укладки фибробетонной смеси, механическим способом будет обеспечено равномерное распределение фибр в теле бетона.

Ключевые слова:
бетон, железобетон, фибробетон, фибра
Текст
Текст (PDF): Читать Скачать

Введение. Ранее на страницах данного журнала авторами была приведена технология изготовления линейных фибробетонных и фиброжелезобетонных элементов с направленной ориентацией фибр по направлению действия основных растягивающих напряжений, действующих в эленменте. Данная технология позволит получить элементы в которых каждое фибровое волокно наиболее эффективно включается в работу элемента, по сравнению с обычными фибробетонными и фиброжелезобетонными элементами, в которых фибровое волокно расположено в теле бетона хаотично. Процесс укладки фибробетонной смеси предлагалось производить с помощью специально разработанной мобильной установки, которая обеспечивала равномерное распределение фибр в теле элемента и их направленное ориентирование. Однако, технология создания ориентации фибровых волокон в бетоне представляет существенный интерес не только применительно к линейным, но и к плитным элементам. Наиболее актуален вопрос создания послойного и разнонаправленного ориентирования фибр, что позволило бы значительно увеличить вклад каждого фибрового волокна в работу плитного элемента. При этом, несмотря на наличие разработанных и апробированных технологий, позволяющих получить частично ориентированное расположение фибр в бетонной матрице, анализируя особенности изготовления плитных элементов можно говорить об актуальности именно механического способа ориентирования фибр в бетоне. Дело в том что большая часть проведенных исследований была направлена на ориентирование фибр уже после их перемешивания с бетонной смесью в бетоносмесителе, что является традиционным способом изготовления фибробетонной смеси, не требующим дополнительного оборудования. Однако, после совместного смешивания фибры и бетона, полученная смесь имеет повышенную жесткость, фибровое волокно распределяется неравномерно и хаотично, вплоть до образования комков из фибровых волокон, что усложняет процесс укладки смеси в опалубку и получение однородной смеси. После этого, даже с применением магнитного поля достаточно проблематично произвести ориентирование фибровых волокон в определенном направлении и получить фибробетон с заданными характеристиками. Также, в предлагаемых методиках подразумевается отсутствие крупного заполнителя в виде щебня, что мало применимо для изготовления плитных элементов.

В связи с вышеизложенным, авторами планируется разработка технологии создания плитных фибробетонных и фиброжелезобетонных элементов с направленной ориентацией фибр в двух направлениях, а также разработка модифицированной мобильной установки для укладки фибробетонной смеси применимой для работы с плитными элементами.

1. Особенности конструкции модифицированной мобильной установки  для плитных фибробетонных и фиброжелезобетонных элементов с направленной ориентацией фибр в двух направлениях по предлагаемой механической технологии.

Изложенная в предыдущей публикации механическая технология позволяет создавать послойное направленное ориентирование фибр, при которой фибры располагаются вдоль действующих в конструкции растягивающих напряжений и может успешно применяться для линейных фибробетонных и фиброжелезобетонных элементов.

Однако линейными элементами ареал применения предлагаемой технологии далеко не исчерпывается. 

Если обеспечить в различных слоях конструкции взаимно перпендикулярное направление в ориентации фибр, то это позволит использовать предлагаемую технологию для изготовления не только линейных, но и плитных элементов с различными условиями опирания и работающих в двух направлениях.

Схема движения и конструкция модифицированной мобильной установки для послойной разнонаправленной ориентации фибр при изготовлении плитных элементов представлена на рис.1 и 2 соответственно.

Для создания первого слоя плитного элемента с продольной ориентацией фибр производится первая проходка установки (рис.1 б) с ориентированием фибр в два этапа.

Первый - предварительное ориентирование фибр в заданном продольном направлении производится путем заполнения опалубки плиты из бункера установки на заданную толщину первого слоя, регулируемую скоростью перемещения бункера и подвижностью смеси.

Второй - окончательное ориентирование фибры в заданном продольном направлении производится проходкой ножей гребёнки при одновременном вибрировании.

Так формируется первый слой – с продольной ориентацией фибр.

Для создания второго слоя с иным – теперь уже поперечным расположением фибр – установка разворачивается под углом 900 и производится вторая проходка установки (рис.1 б) с ориентированием фибр в те же два этапа. При этом осуществляется заполнение опалубки вторым слоем бетонной смеси (рис.1 в), при котором фибры располагаются теперь перпендикулярно по отношению к первому слою.

Так формируется второй слой – уже с поперечной ориентацией фибр.

Описанный процесс повторяется с изменением направления на каждом слое до тех пор, пока форма не будет наполнена послойно и разнонаправленно на всю высоту своего сечения провибрированной фибробетонной смесью.

 

 

Рис.1. Схема послойной ориентации фибр (а) и схема движения установки для формирования первого (б) и второго слоя (в) при изготовлении плитных стале-фибробетонных элементов с послойной разнонаправленной ориентацией фибр.

 

Использование предлагаемой механической технологии позволяет задавать любое послойное ориентирование фибр в конструкции и получить максимальный эффект от применения фибробетонов. При этом отметим возможность регулирования в широких пределах толщины слоя и взаимного угла расположения фибр в слоях элементов.

 

Рис.2. Схема модифицированной мобильной установки для бетонирования плитных элементов с направленной ориентацией фибр

1 – бункер для подачи фибробетонной смеси; 2 – выравнивающая гребенка;

3 – опалубка плиты; 4 – вибрирующий элемент.

 

Отличие в конструкции модифицированной мобильной установки для бетонирования плитных элементов с направленной ориентацией фибр от установки для линейных элементов, заключается только в конструкции подающего бункера и более широкой гребёнке. Особенности конструкции подающего бункера для плитных элементов представлены на рис.3.

 

 

Рис.3. Конструкция бункера подачи фибробетонной смеси для плитных элементов : 1 – стальные стенки бункера; 2 – место выхода фибробетонной смеси

из бункера.

 

 

Выводы. Анализируя сказанное выше, можно сделать следующие выводы:

- обеспечение в разных слоях конструкции взаимно перпендикулярного направления ориентации фибр позволит использовать предлагаемую технологию не только для линейных, но и для плитных элементов с различными условиями опирания и работающих в двух направлениях;

-  предлагаемое двухэтапное механическое ориентирование фибровых волокон в каждом слое позволит обеспечить равномерное распределение фибры в теле бетона и его направленность в направлениях основных растягивающих усилий, действующих в элементе;

- использование предлагаемой технологии позволяет производить послойное ориентирование фибр в конструкции любой конфигурации, с возможностью регулирования толщины каждого слоя в широких пределах, что обеспечивает максимальный эффект от применения фибробетонов.

Список литературы

1. Л. Р.  Маилян, Р. Л.  Маилян, А. В.  Шилов, Расчет прочности изгибаемых фибробетонных элементов с высокопрочной арматурой, Известия вузов. Строительство и архитектура 4 (1997) 4-7

2. Р. Л.  Маилян, Л. Р. Маилян, А. В.  Шилов, М. Т. Абдаллах, Изгибаемые элементы из керамзитофибробетона с высокопрочной арматурой без предварительного напряжения и при частичном, Известия вузов. Строительство 12 (1995) 19-23

3. Л. Р.  Маилян, П.А. Шилов, А.А. Шилов, ПМ №209258 Мобильная установка для укладки фибробетонной смеси, публ. 10.02.2022. Донской государственный технический университет, 2022.

4. СП 52-104-2006*.  Сталефибробетонные конструкции.  -  М.:  ОАО  «НИЦ Строительство», 2010.

5. Аболиньш, Д. С. Дисперсно хаотически армированный бетон как двухфазный материал и некоторые экспериментальные данные о его прочности при центральном сжатии и изгибе / Д. С. Аболиньш, В. К. Кравинскис // Исследования по механике строительных материалов и конструкций. - Рига: РПИ, 1969. - Вып.4. - C. 117 - 123.

6. Вылекжанин, В. П. О совместной работе стержневой и фибровой арматуры в изгибаемых сталефиброжелезобетонных элементах / В. П. Вылекжанин,  В. И. Григорьев // Исследование и расчет новых типов пространственных конструкций гражданских зданий: сб. науч. тр. - Л.: ЛЕНЗНИИЭП, 1985. - С. 69 - 77.


Войти или Создать
* Забыли пароль?