FORMATION OF WEAR-RESISTANT COMPOSITE COATINGS ON TITANIUM ALLOYS IN THE ELECTRIC ARC TREATMENT OF AQUEOUS ELECTROLYTES
Abstract and keywords
Abstract (English):
The monograph presents the results of studying the formation process on titanium alloys of wear-resistant composite coatings based on titanium carbide during electric arc treatment in aqueous electrolytes. The regularities in the composition, structure, and functional properties of the surface during treatment are shown, as well as when doping the two-component Ti-TiC system with transition and valve metals. Theoretical representations of the plasma surface treatment of a metal surface are presented, including a review of the physicochemical mechanism and a thermodynamic analysis of the titanium carbide phase formation in the bulk of the titanium alloy. Some prospects for the practical application of electric arc composite Ti-TiC-coatings are shown. The work may be of interest to engineers, graduate students and researchers involved in the plasma treatment of metals and producing coatings, as well as experts of material science working in the field of creating and treatment new materials.

Keywords:
titanium alloys, composites, titanium carbide, wear-resistant coatings, antifriction properties, porous microstructure, plasma treatment, laser
Text
Table of contents (PDF): Read Download

В монографии представлены результаты исследования процесса формирования на титановых сплавах износостойких композитных покрытий на основе карбида титана при электродуговой обработке в водных электролитах. Показаны закономерности изменения состава, структуры и функциональных свойств поверхности в процессе обработки, а также при легировании двухкомпонентной системы Ti-TiC переходными и вентильными металлами. Приведены теоретические представления процесса плазменной обработки металлической поверхности, включающие рассмотрение физико-химического механизма и термодинамический анализ формирования фазы карбида титана в объеме титанового сплава. Показаны некоторые перспективы практического применения электродуговых композитных Ti-TiC-покрытий.
Работа может представлять интерес для инженеров, аспирантов и научных сотрудников, занимающихся вопросами плазменной обработки металлов и получения покрытий, а также специалистов-материаловедов, работающих в области создания и обработки новых материалов.

References

1. Gorynin I. V. i dr. Titanovye splavy dlya morskoy tehniki / I.V. Gorynin, S. S. Ushkov, A.N. Hatuncev, N.I. Loshakova. SPb.: Politehnika, 2007. 387 s.: il.

2. Kollingz E. V. Fizicheskoe metallovedenie titanovyh splavov. Per. s angl. pod red. B. I. Verkina, V. A. Moskalenko. – M.: «Metallurgiya», 1988. 224 s.

3. Solonina O. P., Glazunov S. G. Titanovye splavy. Zharoprochnye titanovye splavy. M.: «Metallurgiya», 1976. 448 s.

4. Parfenov O.G. Problemy sovremennoy metallurgii titana / O. G. Parfenov, G. L. Pashkov; otv. red. A. D. Mihnev; Ros. Akad. Nauk, Sib. otd-nie, In-t himii i himicheskoy tehnologii. Novosibirsk: Izd-vo SO RAN, 2008. 279 s.

5. Zubkov L. B. Kosmicheskiy metall: Vse o titane. M.: Nauka, 1987. 128 s.

6. Nikolaev G. I. Metall veka/ G.I. Nikolaev. M.: Metallurgiya, 1987. 165s.

7. Tarasov A. V. Metallurgiya titana. – M.: IKC «Akademkniga», 2003. 328 s.: il. 85.

8. Gorynin I. V., Chechulin B. B. Titan v mashinostroenii. – M.: Mashinostroenie, 1990. 400 s.

9. K. Farokhzadeh, A. Edrisy. Transition between mild and severe wear in titanium alloys. Tribology International. 2016. Vol. 94. P. 98–111.

10. J. Cheng, F. Li, Z. Qiao, S. Zhu, J. Yang, W. Liu. The role of oxidation and counterface in the high temperature tribological properties of TiAl intermetallics. Materials and Design. 2015. Vol. 84. P. 245–253.

11. X. X. Li, Y. Zhou, Y. X. Li, X. L. Ji, S. Q. Wang. Dry sliding wear characteristics of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy at various sliding speeds. Metallurgical and Materials Transactions A. 2015. Vol. 46 A. P. 4360–4368.

12. Long M., Rack H. J. Friction and surface behavior of selected titanium alloys during reciprocating-sliding motion. Wear. 2001. Vol. 249 (1). P. 157–167.

13. Mao Y. S., Wang L, Chen K. M., Wang S. Q., Cui X. H. Tribo-layer and its role in dry sliding wear of Ti–6Al–4V alloy. Wear. 2013. Vol. 297(1-2). P. 1032–1039.

14. Cvikker U. Titan i ego splavy. Berlin; N'yu-York, 1974. Per. s nem. M., «Metallurgiya», 1979. 512 s. s il. = Ulrich Zwicker. Titan und Titanlegierungen. Springer-Verlag Berlin, Heidelberg, New York 1974.

15. Rabinovitz E. Frictional Properties of Titanium Alloys. Metal Progress. 1954. V. 65. No 22. P. 107 – 110.

16. Y. Yang, C. Zhang, Y. Wang, Y. Dai, J. Luo. Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester. Tribology International. 2016. Vol. 95. P. 27–34.

17. Chechulin B. B, Ushkov S. S. i dr. Titanovye splavy v mashinostroenii / B. B. Chechulin, S. S. Ushkov, I. N. Razuvaeva, V. N. Gol'dfayn. – L., «Mashinostroenie» (Leningr. otd-nie), 1977. 248 s. s il.

18. Gol'dfayn V. N., Zuev A. M., Klabukov A. G., Lukina V. P. O vliyanii vodoroda i kisloroda na trenie i iznos titanovogo splava // Problemy treniya i iznashivaniya. Kiev: Tehnika, 1975. Vyp. 8. S. 65-69.

19. Buckley D. H., Johnson R. L. Influence of Crystal Structure on Friction Characteristics of Rare-Earth and Related Metals in Vacuum to 10-10 mm of Mercury. ASLE Transactions. 1965. v. 8. P. 123–132.

20. Buckley D. H. Influence of Various Physical Properties of Metals on Their Friction and Wear Behavior in Vacuum. Metals Engineering Quarterly. 1967, May. P. 44-53.

21. Semenov A. P., Pozdnyakov V. V. Metodika i nekotorye rezul'taty issledovaniya treniya i adgezionnogo vzaimodeystviya pri vysokih temperaturah v vakuume i gazovyh sredah // Sb. tr.: Struktura i svoystva zharoprochnyh metallicheskih materialov. M.: Nauka. 1967. S. 101 – 109.

22. Nosovskiy I. G., Isaev I. V., Kosteckiy B. I. O roli kristallicheskogo stroeniya pri trenii i shvatyvanii metallov. Doklady Akademii nauk SSSR. 1971. T 198. № 1. S. 79 – 82.

23. Bowden F. B. and A. E. Hanwell. Friction and wear of diamond high vacuum. Nature, 201, 4926 (1964) P. 1279 – 1281.

24. Bowden F. B., C. A. Brookes and A. E. Hanwell. Anisotropy of friction in crystals. Nature, 203, 4940 (1964) P. 27 – 30.

25. Buckley D. H. Effect of orientation on friction characteristics of single-crystal beryllium in vacuum (10-10 Torr). NASA Technical Note D-3485, July 1966.

26. Wooster W. A., Macdonald G. L. Smears of Titanium Metal. Nature. 1947. V. 160. P. 260.

27. Machlin E. S., Yankee W. R. Friction of Clean Metals and Oxides with Special References to Titanium. Journal of Applied Physics. 1954. V. 25, N 5. P. 576 -581.

28. Yankee W. R., Machlin E. S. Influence of Oxygen and Nitrogen in Solution in Alpha Titanium on the Friction Coefficient of Copper on Titanium. Transactions AIME. 1954, September. P. 989 – 990.

29. Kingsbury E. P., Rabinowicz E. Friction and Wear of Metals to 1000 oC. Transactions of the ASME. 1959. Vol. 81, No 2, P. 118–122.

30. Wilcox R. J., Whitton P.W. The Rolling of Thin Titanium Strip. Journal of the Institute of Metals. 1960. Vol. 88. P. 200–204.

31. Rowe G. W. Vapour lubrication of titanium and zirconium. British J. Appl. Physics. 1956. V. 7, N 3. P. 152-153.

32. Rabinowicz E., Kingsbury E. P. Lubricants for titanium. Metal Progress. 1955. V. 67, N 5. P. 112-114.

33. Peterson M. B., Johnson R. L. Solid Lubricants For Titanium. Lubrication Engineering. 1955. V. 11. No 5. P. 297-299.

34. Roberts R. W., Owens R. S. Boundary lubrication of titanium-titanium and titanium-steel. Wear. 1963. No 6. P. 444–456.

35. Baldwin D. J., Rowe G. W. Lubrication at High Temperatures with Vapour-Deposited Surface Coatings. Transactions of the ASME. 1961. Vol. 83. P. 133–138.

36. Budinski K. G. Tribological properties of titanium alloys. Wear. 1991. Vol. 151 (2). P. 203–217.

37. Y. Qin, D. Xiong, J. Li. Tribological properties of laser surface textured and plasma electrolytic oxidation duplex-treated Ti6Al4V alloy deposited with MoS2 film. Surface & Coatings Technology. 2015. Vol. 269. P. 266–272.

38. Y. Qin, D. Xiong, J. Li. Characterization and friction behavior of LST/PEO duplex-treated Ti6Al4V alloy with burnished MoS2 film. Applied Surface Science. 2015. Vol. 347. P. 475–484

39. J. Umeda, B. Fugetsu, E. Nishida, H. Miyaji, K. Kondoh. Friction behavior of network-structured CNT coating on pure titanium plate. Applied Surface Science. 2015. Vol. 357. P. 721–727.

40. Kaptyug I. S., Syschikov V. I. Vliyanie legirovaniya na frikcionnye svoystva titana // Metallovedenie i termicheskaya obrabotka metallov. 1959. № 4. S. 22-27.

41. S. Wang, Z. Ma, Z. Liao, J. Song, K. Yang, W. Liu. Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy. Materials Science and Engineering C. 2015. Vol. 57. P. 123–132.

42. I. N. Francevich, D. M. Karpinos L, I. Tuchinskiy i dr. Antifrikcionnye kompozicii na osnove spechennogo titana // Poroshkovaya metallurgiya. 1978. № 1. S. 61-65.

43. Enevich V. T., Karpinos D. M., Polotay V. V. i dr. Spechennye antifrikcionnye materialy na osnove titana // Poroshkovaya metallurgiya. 1979. № 5. S. 87- 91.

44. Radomysel'skiy I. D., Titarenko S. V., Polotay V. V. Povyshenie iznosostoykosti titana vvedeniem tverdyh soedineniy // V. kn.: Spechennye konstrukcionnye materialy. – K., izd. IPM AN USSR, 1976. S. 113–117.

45. K. Aniołek, M. Kupka, A. Barylski, G. Dercz, Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process, Appl. Surf. Sci. 357 (2015) 1419–1426.

46. Ushkov S. S., Loshakova N. I. Antifrikcionnoe oksidirovanie titanovyh splavov. Metalloobrabotka. 2002. № 2 (8). S. 15–21.

47. Gordienko P. S., Gnedenkov S. V. Mikrodugovoe oksidirovanie titana i ego splavov. Vladivostok: Dal'nauka, 1997. 185 s.

48. Gordienko P. S. Obrazovanie pokrytiy na anodnopolyarizovannyh elektrodah v vodnyh elektrolitah pri potencialah iskreniya i proboya. Vladivostok: Dal'nauka, 1996. 216 s.

49. Suminov I. V. i dr. Mikrodugovoe oksidirovanie (teoriya, tehnologiya, oborudovanie) / I.V. Suminov i dr. M.: EKOMET, 2005. 368 s.: il.

50. Gordienko P. S. Formirovanie pokrytiy na ryade metallov i splavov v elektrolitah pri mikroplazmennyh processah // Dissertaciya na soiskanie stepeni doktora tehnicheskih nauk. Dnepropetrovsk. 1991. 680 s.

Login or Create
* Forgot password?