Abstract and keywords
Abstract (English):
In this paper has been proposed a geometric model for forming problem of contour-parallel lines (equidistant lines) for a flat contour with an island, and has been obtained the problem’s analytical solution, which is relevant for computer-aided design of cutting tools processing pocket surfaces on CNC machines. The proposed geometric model is based on cyclograph mapping of space on a plane. Beyond the analytical solution the geometric model differs from the known algebraic models and their solutions for considered forming problem also by the fact that it allows obtain a more complete and evident representation on the relationship and interaction for all its geometric components at the stages of 3D computer visualization. A 3D geometric model based on a cyclograph mapping of space has been proposed for obtaining the families of equidistant lines for connected and multiply connected regions with closed contours taken as a basis for pocket surfaces modeling. An algorithm for the analytical solution of the problem related to equidistant families generation is getting from the geometric model. All stages of the analytical solution are accompanied by a figurative representation of geometric objects and their relations in the geometric model’s virtual electronic space. The proposed in this paper algorithm for the case of a doubly connected polygonal region can be used as a basis for generation of equidistant families for multiply connected polygonal regions. The presence of the analytical solution for the problem related to equidistant families generation simplifies greatly the automated calculation of the tool path and preparation of control programs for pocket surfaces manufacturing on CNC machines. Have been presented an example and algorithm providing support for working capacity of the proposed geometric model for considered forming problem.

equidistant, cyclograph display, α-surface, geometric model, contour-parallel tool paths.

1. Baykov V.D. Reshenie traektornykh zadach v mikroprotsessornykh sistemakh ChPU [Solution of trajectory problems in microprocessor-based CNC systems]. Mashinostroenie Leningr. Otdelenie Publ., 1986. 106 p. (in Russian)

2. Bulychev R.N. Opisanie protsessa deformirovaniya listovogo materiala s ispol'zovaniem parametricheskogo tverdotel'nogo modelirovaniya [Description of the process of deformation of sheet material using parametric solid modeling]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 1, pp. 48–56. DOI: 10.12737/article_5ad09a84cbd105.88047545. (in Russian)

3. Dolya P.G. Parametricheskie uravneniya kusochno–gladkikh nepreryvnykh krivykh [Parametric equations of piecewise smooth continuous curves]. Vestnik Mezhdunarodnogo Slavyanskogo Universiteta [Bulletin of the International Slavic University]. 2002, V. 5, I. 7. (in Russian)

4. Panchuk K.L. Tsiklograficheskaya nachertatel'naya geometriya [Cyclographic descriptive geometry]. Omsk: OmGTU Publ., 2017. 232 p. (in Russian)

5. Panchuk K.L. Elementy tsiklograficheskoy nachertatel'noy geometrii [Elements of cyclographic descriptive geometry]. Nizhniy Novgorod, 2016, pp. 69–71. (in Russian)

6. Sal'kov N.A. Geometricheskaya sostavlyayushchaya tekhnicheskikh innovatsiy [Geometrical component of technical innovations]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 2, pp. 85–93. DOI: 10.12737/article_5b55a-5163fa053.07622109. (in Russian)

7. Sal'kov N.A. Obshchie printsipy zadaniya linychatykh poverkhnostey [General principles for setting ruled surfaces]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 4, pp. 20–31. (in Russian)

8. Sal'kov N.A. Obshchie printsipy zadaniya lineychatykh poverkhnostey [General principles for setting ruled surfaces]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 1, pp. 21–30. (in Russian)

9. Umbetov N.S. Ob algoritme graficheskogo postroeniya geodezicheskoy linii na lineychatoy poverkhnosti [On the algorithm for graphical construction of a geodesic line on a ruled surface]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 4, pp. 15–18. DOI: 10.12737/17346. (in Russian)

10. Choi H.I. Medial axis transform and offset curves by Minkowski Pythagorean hodograph curves / H.I. Choi, C.Y. Han, H.P. Moon, K.H. Roh, N.S. Wee // Computer-Aided Design. 1999. Vol. 31. № 1. P. 59–72.

11. Choi H.I. Mathematical theory of medial axis transform / H.I. Choi, S.W. Choi, H.P. Moon // Pacific J. Math. 1997. Vol. 181. № 1. P. 56–88.

12. Culver T. Exact computation of the medial axis of a polyhedron / T. Culver, J. Keyser, D. Manocha // Computer Aided Geometric Design. — 2004. Vol. 21. №1. P. 65–98.

13. He Z. A medial axis transformation based process planning method for rapid tooling: dissertation of the master of science / Z. He. Ames, Iowa, 2017. 72 p. DOI: 180810-5146. URL: 14. Held M. On the Computational Geometry of Pocket Machining. Lecture Notes in Computer Science. Vol. 500 / M. Held — Springer Verlag. Berlin, 1991. 184 p.

14. Held M. On the Computational Geometry of Pocket Machining. Lecture Notes in Computer Science. Vol. 500 / M. Held. Springer Verlag. Berlin, 1991. 184 p.

15. Kalmar-Nagy T. Oscillator-based Path Planning for Pocket Milling / T. Kalmar-Nagy, H.An Erdim // International Symposium on Tools & Methods of Competitive Engineering: Proceedings of TMCE. 2014. P. 1–15.

16. Lee D. Medial axis transformation of a planar shape / D. Lee // IEEE. Trans. Pat. Anal. Mach. Int. PAMI. 1982. Vol. 4. № 4. P. 363–369.

17. Li X.J. Offset of planar curves based on polylines / X.J. Li, J.S. Ye // Journal of Institute of Command and Technology. 2001. Vol. 12. P. 5–8 (in Chinese).

18. Maekawa T. An overview of offset curves and surfaces / T. Maekawa // Computer Aided Design. 1999. Vol. 31. P. 165–173.

19. Panchuk, K.L. Cyclographic Descriptive Geometry of Space E3 / K.L. Panchuk, N.V. Kaygorodtseva // Abstracts of the 17th International Conference on Geometry and Graphics (ICGG 2016), 4-8 August 2016 / Beijing Institute of Technology press. Beijing, China, 2016. P. 22–24.

20. Panchuk K.L. Surface triads with optical properties [Electronic resource] / K.L. Panchuk, E.V. Lyubchinov, I.V. Krysova // IOP Conf. Series: Journal of Physics: Conf. Series. 2017. Vol. 944. DOI:10.1088/1742–6596/944/1/012086.

21. Panchuk K.L. Cyclographic modeling of surface forms of highways [Electronic resource] / K.L. Panchuk, A.S. Niteyskiy, E.V. Lyubchinov // IOP Conf. Series: Journal of Physics: Conf. Series. 2017. Vol. 262. DOI: 0.1088/1757–899X/262/1/012108.

22. Panchuk K.L. Spatial Cyclographic modeling on Naumovich hyperdrawing / K.L. Panchuk, E. V. Lyubchinov // The Journal of Polish Society for Geometry and Engineering Graphics. 2018. Vol. 31. P. 69–78.

23. Park S.C. Offset Tool-Path Linking for Pocket Machining [Tekst] / S.C. Park, Y.C. Chung // Computer-Aided Design. 2002. Vol. 34. № 4. P. 299–308.

24. Persson H. NC machining of arbitrary shaped pockets [Tekst] / H. Persson // Computer-Aided Design. 1978. Vol. 10. № 3. P. 169–174.

25. Pham B. Offset curves and surfaces: a brief survey / B. Pham // Computer-Aided Design. 1992. Vol. 24. P. 223–239.

26. Pottmann H. Applications of Laguerre Geometry in CAGD / H. Pottmann, M. Peternell // Comp. Aided Geometric Design. 1998. Vol. 15. P. 165–186.

27. Pottmann H. Computational Line Geometry / H. Pottmann, J. Wallner. Berlin. Heidelberg: Springer Verlag, 2001. 565 p.

28. Ramanathana M. Interior Medial Axis Transform computation of 3D objects bound by free-form surfaces / M. Ramanathana, B. Gurumoorthyb // Computer-Aided Design.

29. Sherbrooke E.C. An algorithm for the medial axis transform of 3d polyhedral solids / E.C. Sherbrooke, N.M. Patrikalakis, E. Brisson // IEEE Transactions on Visualization and Computer Graphics. 1996. Vol. 2. № 1. P. 44–61.

30. Xu-Zheng Liu An offset algorithm for polyline curves / XuZheng Liu, Jun-Hai Yong, Guo-Qin Zheng, Jia-Guang Sun // Computers in Industry. 2007. Vol. 58. P. 240–254.

Login or Create
* Forgot password?