Расчет центрально сжатых трубобетонных колонн кольцевого сечения с учетом физической нелинейности

УДК 624.04

Хашхожев Казбек Нарзанович

аспирант кафедры «Сопротивление материалов» ФГБОУ ВО «Донской государственный технический университет» (г. Ростов-на-Дону, ул. Социалистическая, 162) e-mail: kazbek_hash@mail.ru

Аваков Артур Артурович

кандидат технических наук, доцент кафедры «Сопротивление материалов» ФГБОУ ВО «Донской государственный технический университет» (г. Ростов-на-Дону, ул. Социалистическая, 162) e-mail: streetdriving@mail.ru

Аннотация: В статье получены разрешающие уравнения для расчета с учетом физической нелинейности и ползучести центрально сжатых трубобетонных колонн кольцевого поперечного сечения. Приведены примеры расчета на несущую способность при кратковременном действии нагрузки. Решение выполнялось численно в среде Matlab с применением метода конечных разностей. В качестве закона деформирования бетона использована деформационная теория пластичности Г.А. Гениева.

Ключевые слова: трубобетон, кольцевое сечение, несущая способность, деформационная теория пластичности, метод конечных разностей, физическая нелинейность

Введение. По сравнению с традиционными железобетонными конструкциями трубобетонные колонны (ТБК) имеют ряд значительных преимуществ, но в то же время они имеют и недостатки, один из которых — отсутствие общепринятых методов расчета несущей способности ТБК с учетом эффекта поперечного обжатия бетона. Еще один существенный недостаток ТБК — отсутствие совместной работы в поперечном направлении между бетоном и стальной оболочкой в упругой стадии из-за более высокого коэффициента Пуассона стали. Чтобы избавиться от этого недостатка, в бетонном ядре создают предварительные напряжения бокового обжатия. Это обстоятельство должно быть отражено в расчетной модели.

Для обеспечения совместной работы стальной оболочки с бетоном на ранних стадиях нагружения А.Л. Кришаном предложено осуществлять предварительное напряжение бетонного ядра путем длительного прессования бетонной смеси с использованием специально разработанного пустотообразователя, либо путем последовательного вдавливания трех стальных трубок различного диаметра в бетонную смесь вдоль направляющего стержня, расположенного соосно с внешней оболочкой [1]. В этом случае колонна приобретает кольцевое поперечное сечение. В статьях [1-5] представлены методы расчета таких колонн, но они содержат эмпирические коэффициенты, что ограничивает возможность их применения к новым составам бетонов, другим материалам оболочки и т.д.

Целью данной работы выступает построение модели деформирования ТБК, основанной на наиболее общих уравнениях механики деформируемого твердого тела и свободной от эмпирических коэффициентов.

Вывод разрешающих уравнений. Элемент рассматриваемой конструкции показан на рис. 1.

CALCULATION OF CENTRALLY COMPRESSED CONCRETE FILLED STEEL TUBULAR COLUMNS OF ANNULAR SECTION TAKING INTO ACCOUNT PHYSICAL NONLINEARITY

Kazbek Khashkhozhev

postgraduate student of the department "Strength of materials", Don State Technical University; e-mail: kazbek hash@mail.ru;

Arthur Avakov

Artnur Avakov

Candidate of technical sciences, associate professor of the department "Strength of materials", Don State Technical University; e-mail: streetdriving@mail.ru;

Abstract. In the article, the resolving equations are obtained for the calculation taking into account the physical nonlinearity and creep of centrally compressed concrete filled steel tubular columns of annular cross-section. The examples of the calculation of the bearing capacity with a short-term load are given. The solution was carried out numerically in the Matlab environment using the finite difference method. The deformation theory of plasticity by G.A. Geniev was used.

Keywords: pipe concrete, annular section, bearing capacity, deformation theory of plasticity, finite difference method, physical nonlinearity

14

Рис. 1. Расчетная схема

Кольцевые напряжения во внутренней и внешней обойме можно вычислить по формулам:

$$\sigma_{s\theta}^{a} = -\frac{p_{a}a}{\delta^{a}}; \sigma_{s\theta}^{b} = \frac{p_{b}b}{\delta^{b}}, \qquad (1)$$

где *a* и *b* – соответственно внутренний и внешний радиус бетонного ядра, p_a и p_b – внутреннее и внешнее контактное давление ($p_a = -\sigma_r(a), p_b = -\sigma_r(b)$), δ^a и δ^b – толщина внутренней и внешней стальной оболочки.

При выводе разрешающих уравнений учтем наличие деформаций ползучести. Связь между напряжениями и деформациями в бетоне запишется в виде:

$$\varepsilon_{\theta} = \frac{1}{E} \left(\sigma_{\theta} - \nu \left(\sigma_{r} + \sigma_{z} \right) \right) + \varepsilon_{\theta}^{*};$$

$$\varepsilon_{r} = \frac{1}{E} \left(\sigma_{r} - \nu \left(\sigma_{\theta} + \sigma_{z} \right) \right) + \varepsilon_{r}^{*};$$

$$\varepsilon_{z} = \frac{1}{E} \left(\sigma_{z} - \nu \left(\sigma_{\theta} + \sigma_{r} \right) \right) + \varepsilon_{z}^{*},$$

(2)

где $\mathcal{E}_{\theta}^{*}, \mathcal{E}_{r}^{*}, \mathcal{E}_{z}^{*}$ – деформации ползучести.

При получении основного уравнения будем предполагать, что модуль упругости бетона является функцией от радиуса *г*. Бетон в обойме находится в условиях осесимметричной задачи, для которой справедливы следующие дифференциальные зависимости [6,7]:

$$\varepsilon_{\theta}' + \frac{\varepsilon_{\theta} - \varepsilon_r}{r} = 0; \quad \sigma_r' + \frac{\sigma_r - \sigma_{\theta}}{r} = 0.$$
 (3)

Штрихом в формулах (3) обозначена производная по радиусу. Выразим из (2) напряжение σ_z :

$$\sigma_{z} = \nu (\sigma_{\theta} + \sigma_{r}) + E(\varepsilon_{z} - \varepsilon_{z}^{*}).$$
(4)

Продифференцируем далее равенство (4) по r:

$$\sigma'_{z} = \nu \left(\sigma'_{\theta} + \sigma'_{r} \right) - \left(E \varepsilon^{*}_{z} \right)' + E' \varepsilon_{z} + E \varepsilon'_{z} .$$
 (5)

Будем считать, что все точки торцевого сечения трубобетонной колонны перемещаются одинаково, т.е. деформация _z не зависит от *r*. Тогда равенство (5) перепишется в виде:

$$\sigma'_{z} = \nu \left(\sigma'_{\theta} + \sigma'_{r} \right) - \left(E \varepsilon^{*}_{z} \right)' + E' \varepsilon_{z}.$$
(6)

Выразим из (3) напряжение :

$$\sigma_{\theta} = r\sigma_r' + \sigma_r. \tag{7}$$

Подставим далее (7) в (5):

$$\sigma'_{z} = \nu \left(r \sigma''_{r} + 3 \sigma'_{r} \right) - \left(E \varepsilon^{*}_{z} \right)' + E' \varepsilon_{z}.$$
(8)

Подставив первое уравнение из (2) в первое уравнение из (3) с учетом (4) - (8), получим:

$$\sigma_r'' + \left(\frac{3}{r} - \frac{E'}{E}\right)\sigma_r' - \sigma_r \frac{1 - 2\nu}{Er(1 - \nu)}E' =$$

$$-\frac{E}{(1 - \nu^2)r}\left(\left(\varepsilon_{\theta}^*\right)' + \frac{\varepsilon_{\theta}^* - \varepsilon_r^*}{r} + \nu\left(\varepsilon_z^*\right)'\right).$$
(9)

Полученное уравнение совпадает с основным разрешающим уравнением для случая плоского деформированного состояния цилиндра [8,9]. Решение уравнения (9) выполняется численно методом конечных разностей. Перепишем данное уравнение в виде:

$$\sigma_r'' + \varphi(r)\sigma_r' + \psi(r)\sigma_r = f(r), \qquad (10)$$

где

$$\varphi(r) = \left(\frac{3}{r} - \frac{E'}{E}\right), \psi(r) = -\frac{1 - 2\nu}{Er(1 - \nu)}E', f(r) =$$
$$= -\frac{E}{(1 - \nu^2)r}\left(\left(\varepsilon_{\theta}^*\right)' + \frac{\varepsilon_{\theta}^* - \varepsilon_r^*}{r} + \nu\left(\varepsilon_z^*\right)'\right).$$

Интервал [a; b] разбивается на *n* отрезков. Разностная аппроксимация уравнения (10) для узлов с номерами *i* = 2...*n* записывается в виде:

$$\frac{\sigma_{i+1} - 2\sigma_i + \sigma_{i-1}}{\Delta r^2} + \varphi(r_i) \frac{\sigma_{i+1} - \sigma_{i-1}}{2\Delta r} + \psi(r_i)\sigma_i = f(r_i).$$
(11)

В итоге имеем n - 1 линейных уравнений с n + 1неизвестными. К этим уравнениям необходимо добавить условия на внутренней и внешней поверхности бетонного ядра, в качестве которых выступает равенство кольцевых деформаций бетона и стали. С учетом (4) представим кольцевую деформацию бетона в следующем виде:

$$\varepsilon_{\theta} = \frac{1}{E_1} (\sigma_{\theta} - \nu_1 \sigma_r) + \varepsilon_{\theta}^* + \nu \varepsilon_z^* - \nu \varepsilon_z, \qquad (12)$$

где : $E_1 = \frac{E}{1 - v^2}; v_1 = \frac{v}{1 - v}.$

Приравнивая (12) к кольцевым деформациям трубы, с учетом (7), при r = а получим следующее условие:

$$\frac{1}{E_1} \left(a\sigma'_r + \sigma_r (1 - v_1) \right) + \varepsilon_{\theta}^* + v\varepsilon_z^* - v\varepsilon_z = (13)$$
$$= \frac{1}{E_s^a} \left(-\frac{p_a a}{\delta^a} - v_s^a \sigma_{sz}^a \right),$$

где E_s^a и v_s^a — соответственно модуль упругости и коэффициент Пуассона внутренней трубы.

Аналогично записываются условия при r = b:

$$\frac{1}{E_1} \left(b\sigma'_r + \sigma_r \left(1 - v_1 \right) \right) + \varepsilon^*_{\theta} + v \varepsilon^*_z - v \varepsilon_z = \qquad (14)$$
$$= \frac{1}{E_{\bullet}^b} \left(\frac{p_b b}{\delta^b} - v_s^b \sigma_{sz}^b \right).$$

Условия (13) и (14) содержат 3 дополнительные неизвестные: деформацию z и напряжения σ_{sz}^{a} и σ_{sz}^{b} , поэтому для решения задачи необходимы три дополнительных уравнения. Первые два уравнения — это условия совместности деформаций бетона и стальных труб вдоль оси z.

$$\varepsilon_{z} = \varepsilon_{sz}^{a} = \frac{1}{E_{s}^{a}} \left(\sigma_{sz}^{a} + v_{s}^{a} \frac{p_{a}a}{\delta^{a}} \right); \varepsilon_{z} = \varepsilon_{sz}^{b} = \frac{1}{E_{s}^{b}} \left(\sigma_{sz}^{b} - v_{s}^{b} \frac{p_{b}b}{\delta^{b}} \right).$$
(15)

Третье уравнение может быть получено из условия, что сжимающая сила F представляет сумму усилий, воспринимаемых бетоном и стальными оболочками:

$$F = F_b + F_s^a + F_s^b.$$
(16)

Усилия, воспринимаемые внутренней и внешней трубой, вычисляются как:

$$F_s^a = -\sigma_{sz}^a A_s^a, F_s^b = -\sigma_{sz}^b A_s^b, \qquad 17)$$

где $A_s^a = 2\pi a \delta^a$, $A_s^b = 2\pi b \delta^b$.

Усилие, воспринимаемое бетоном, вычисляется следующим образом:

$$F_{b} = -2\pi \int_{a}^{b} \sigma_{z} r dr = -2\pi \nu \left(b^{2} \sigma_{r} \left(b \right) - a^{2} \sigma_{r} \left(a \right) \right) - \epsilon$$

$$= \varepsilon_{z} \cdot 2\pi \int_{a}^{b} E(r) r dr + 2\pi \int_{a}^{b} \varepsilon_{z}^{*} r dr.$$

$$(18)$$

Таким образом, при делении интервала [a; b] на п отрезков задача сводится к n + 4 линейных алгебраических уравнений с n + 4 неизвестных.

Результаты и обсуждение. Расчет на кратковременное действие нагрузки выполнялся при следующих исходных данных: a = 0,05 м, b = 0,15 м, a = b = 1 мм, начальный модуль упругости бетона Eb0 = 3,25·104 МПа, прочность бетона при сжатии и растяжении Rb = = 22 МПа и Rbt = 1,8 МПа соответственно, предел текучести стали Rs = 400 МПа. В качестве зависимостей, устанавливающих связь между напряжениями и мгновенными деформациями бетона, использовались соотношения деформационной теории пластичности бетона Г.А. Гениева [10].

На рис. 2 показан график зависимости осевой деформации от нагрузки. Предельная нагрузка Fult в этом случае составила 1975 кН. Штриховая линия на рис. 2 показывает решение без учета поперечных деформаций бетона и стальной обоймы, которое дает значение Fult = 1610 кН.

Рис. 2. Зависимость осевой деформации от нагрузки

Контактное давление между внутренней оболочкой и бетоном при низких уровнях нагружения положительно, но затем становится отрицательным. Между внешней оболочкой и бетоном, наоборот, при небольших нагрузках контактное давление отрицательное, и затем становится положительным. Графики изменения давлений ра и рb в зависимости от сжимающей силы приведены на рис. 3.

ß

Совместная работа стальных оболочек с бетоном на ранних стадиях загружения может быть обеспечена путем создания предварительного обжатия бетона. Помимо обеспечения совместности поперечных деформаций бетона и стали предварительное напряжение приводит к увеличению несущей способности колонн за счет их работы в условиях объемного напряженного состояния. Графики зависимости осевой деформации от величины сжимающей силы при различных уровнях предварительного напряжения, построенные при тех же исходных данных, как и ранее приведены на рис. 4. При уровне предварительного обжатия p0 = 3 МПа по сравнению с колонной без предварительного обжатия ядра прирост несущей способности составил 26,6%.

Рис. 3. Изменение контактных давлений в зависимости от величины нагрузки

Рис. 4. Изменение осевой деформации в зависимости от нагрузки при различных уровнях предварительного напряжения

Выводы. Построена модель деформирования трубобетонных колонн кольцевого сечения при центральном сжатии с учетом физической нелинейности и ползучести. Задача расчета сведена к дифференциальному уравнению второго порядка. Установлено, что контактное давление между внутренней оболочкой и бетоном при низких уровнях нагружения положительно, но затем становится отрицательным. Между внешней оболочкой и ядром, наоборот, при малых нагрузках оно отрицательно, и затем становится положительным. Необходимость создания предварительных сжимающих напряжений в бетонном ядре подтверждена численным моделированием. При создании предварительного напряжения прирост несущей способности за счет работы бетона в условиях объемного напряженного состояния составил 26,6%.

Литература

- Krishan A. L., Rimshin V. I., Troshkina E. A. Strength of short concrete filled steel tube columns of annular cross section // IOP Conference Series: Materials Science and Engineering. 2018. T. 463. № 2. C. 022062.
- Krishan A. L., Troshkina E. A., Chernyshova E. P. Strength of Short Centrally Loaded Concrete-Filled Steel Tubular Columns //IFAC-PapersOnLine. 2018. T. 51. №. 30. C. 150-154.
- Krishan A. L., Chernyshova E. P., Sabirov R. R. Calculating the Strength of Concrete Filled Steel Tube Columns of Solid and Ring Cross-Section //Procedia Engineering. 2016. T. 150. C. 1878-1884.
- 4. Wong Y. L. и др. Behavior of FRP-confined concrete in annular section columns //Composites Part B: Engineering. 2008. T. 39. №. 3. C. 451-466.
- Wan C. Y., Zha X. X. Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading // Steel and Composite Structures. 2016. T. 20. №. 3. C. 571-597.

- Mailyan L.R., Chepurnenko A.S., Ivanov A. Calculation of prestressed concrete cylinder considering creep of concrete // Procedia Engineering, 2016. T.165. C. 1853-1857.
- Чепурненко А.С., Андреев В.И., Языев Б.М. Построение модели равнонапряженного цилиндра на основе теории прочности Мора // Вестник МГСУ. 2013. №5. С. 56–61.
- Дудник А.Е., Чепурненко А.С., Никора Н.И. Плоская осесимметричная задача термовязкоупругости для полимерного цилиндра // Инженерный вестник Дона. 2015. №1-2. URL: http://ivdon.ru/ru/magazine/archive/n1p2y2015/2816
- Дудник А.Е., Чепурненко А.С., Литвинов С. В., Денего А.С. Плоское деформированное состояние полимерного цилиндра в условиях термовязкоупругости // Инженерный вестник Дона. 2015. №2. URL: http://ivdon.ru/ru/ magazine/archive/n2p2y2015/3063
- Гениев Г.А., Киссюк В.Н., Тюпин Г.А. Теория пластичности бетона и железобетона. М.: Стройиздат, 1974. 316 с.

References

- Krishan A. L., Rimshin V. I., Troshkina E. A. Strength of short concrete filled steel tube columns of annular cross section // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 463. No. 2. Article 022062.
- Krishan A. L., Troshkina E. A., Chernyshova E. P. Strength of Short Centrally Loaded Concrete-Filled Steel Tubular Columns //IFAC-PapersOnLine. 2018. Vol. 51. No. 30. Pp. 150-154.
- Krishan A. L., Chernyshova E. P., Sabirov R. R. Calculating the Strength of Concrete Filled Steel Tube Columns of Solid and Ring Cross-Section //Procedia Engineering. 2016. Vol. 150. Pp. 1878-1884.
- Wong Y. L. и др. Behavior of FRP-confined concrete in annular section columns //Composites Part B: Engineering. 2008. Vol. 39. No. 3. Pp. 451-466.
- Wan C. Y., Zha X. X. Nonlinear analysis and design of concretefilled dual steel tubular columns under axial loading //Steel and Composite Structures. 2016. Vol. 20. No. 3. Pp. 571-597.
- Mailyan L.R., Chepurnenko A.S., Ivanov A. Calculation of prestressed concrete cylinder considering creep of concrete // Procedia Engineering. 2016. Vol.165. Pp. 1853-1857.

- Chepurnenko A.S., Andreev V.I., Yazyev B.M. Postroyeniye modeli ravnonapryazhennogo tsilindra na osnove teorii prochnosti Mora [Construction of a model of an equally stressed cylinder based on Mohr's theory of strength] // Vestnik MGSU. 2013. No. 5. Pp. 56–61.
- Dudnik A.E., Chepurnenko A.S., Nikora N.I. Ploskaya osesimmetrichnaya zadacha termovyazkouprugosti dlya polimernogo tsilindra [Plane axisymmetric problem of thermoviscoelasticity for a polymer cylinder] // Inzhenernyy vestnik Dona. 2015. No. 1-2. URL: http://ivdon.ru/ru/ magazine/archive/n1p2y2015/2816
- Dudnik A.E., Chepurnenko A.S., Litvinov S. V., Denego A.S. Ploskoye deformirovannoye sostoyaniye polimernogo tsilindra v usloviyakh termovyazkouprugosti [Plane deformed state of a polymer cylinder under thermoviscoelastic conditions] // Inzhenernyy vestnik Dona. 2015. No. 2. URL: http://ivdon. ru/ru/magazine/archive/n2p2y2015/3063
- Geniev G.A., Kissyuk V.N., Tyupin G.A. Teoriya plastichnosti betona i zhelezobetona [The theory of plasticity of concrete and reinforced concrete]. Moscow: Stroyizdat, 1974. 316 p.

K